
 CSE Page 1

SVR ENGINEERING COLLEGE
AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

2020-21

LABORATORY MANUAL

OF

Operating Systems Laboratory
(19A05403P)

 (R-19 REGULATION)

Prepared by

Mr. B. RAMA SUBBAIAH
Asso. Professor For

B.Tech II YEAR – IV SEM. (CSE)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SVR ENGINEERING COLLEGE
(AFFILIATED TO JNTUA ANANTHAPURAM- AICITE-INDIA)

AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

 CSE Page 2

LAB MANUAL CONTENT

Operating Systems Laboratory
 (19A05403P)

Institute Vision & Mission, Department Vision & Mission

1. PO, PEO& PSO Statements.

2. List of Experiments

3. CO-PO Attainment

4. Experiment Code and Outputs

1. Institute Vision & Mission, Department Vision & Mission

Institute Vision:

To produce Competent Engineering Graduates & Managers with a strong

base of Technical & Managerial Knowledge and the Complementary Skills

needed to be Successful Professional Engineers & Managers.

Institute Mission:

To fulfill the vision by imparting Quality Technical & Management

Education to the Aspiring Students, by creating Effective Teaching/Learning

Environment and providing State – of the – Art Infrastructure and Resources.

Department Vision:

To produce Industry ready Software Engineers to meet the challenges of

21st Century.

Department Mission:

 Impart core knowledge and necessary skills in Computer Science and

Engineering through innovative teaching and learning methodology.

 Inculcate critical thinking, ethics, lifelong learning and creativity needed

for industry and society.

 Cultivate the students with all-round competencies, for career, higher

education and self-employability.

 CSE Page 3

2. PO, PEO& PSO Statements

PROGRAMME OUTCOMES (POs)

PO-1: Engineering knowledge - Apply the knowledge of mathematics, science,

engineering fundamentals of Computer Science& Engineering to solve complex real-life

engineering problems related to CSE.

PO-2: Problem analysis - Identify, formulate, review research literature, and analyze

complex engineering problems related to CSE and reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions - Design solutions for complex engineering

problems related to CSE and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety, cultural,

societal and environmental considerations.

PO-4: Conduct investigations of complex problems - Use research-based knowledge and

research methods, including design of experiments, analysis and interpretation of data

and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage - Select/Create and apply appropriate techniques, resources and

modern engineering and IT tools and technologies for rapidly changing computing needs,

including prediction and modeling to complex engineering activities, with an

understanding of the limitations.

PO-6: The engineer and society - Apply reasoning informed by the contextual knowledge

to assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the CSE professional engineering practice.

PO-7: Environment and Sustainability - Understand the impact of the CSE professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of, and need for sustainable development.

PO-8: Ethics - Apply ethical principles and commit to professional ethics and

responsibilities and norms of the relevant engineering practices.

PO-9: Individual and team work - Function effectively as an individual, and as a member

or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication - Communicate effectively on complex engineering activities with

the engineering community and with the society-at-large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, give and receive clear instructions.

PO-11: Project management and finance - Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

PO-12: Life-long learning - Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadcast context of technological

changes.

 CSE Page 4

Program Educational Objectives (PEOs):

PEO 1:Graduates will be prepared for analyzing, designing, developing and testing the

software solutions and products with creativity and sustainability.

PEO 2: Graduates will be skilled in the use of modern tools for critical problem solvingand

analyzing industrial and societal requirements.

PEO 3:Graduates will be prepared with managerial and leadership skills for career and

starting up own firms.

Program Specific Outcomes (PSOs):

PSO 1:Develop creative solutions by adapting emerging technologies / tools for real time

applications.

PSO 2: Apply the acquired knowledge to develop software solutions and innovative mobile

apps for various automation applications

2.1 Subject Time Table

SVR ENGINEERING COLLEGE::NANDYAL

DEPARTMENT OF CSE

Mr. B. RAMA SUBBAIAH

II-IV

Day/

Time
9:30 AM 10:20 AM

11:30

AM

12:20

PM-

LU
N

C
H

 B
R

EA
K

02:00

PM

02:50

PM

03:40

PM

 10:20

AM
11:10AM

12:20

PM

01:10

PM

02:50

PM

03:40

PM

04:30

PM

MON

TUE

WED OS LAB

THU

FRI

SAT

 CSE Page 5

 OPERATING SYSTEMS LABORATORY

 (19A05403P)

OBJECTIVES

 To learn Unix commands and shell programming.

 To implement various CPU Scheduling Algorithms.

 To implement Process Creation and Inter Process Communication.

 To implement Deadlock Avoidance and Deadlock Detection Algorithms.

 To implement Page Replacement Algorithms, File Organization and File

Allocation Strategies.

LIST OF EXPERIMENTS

1. Basics of UNIX commands

2. Write programs using the following system calls of UNIX operating system fork,

exec, getpid, exit, wait, close, stat, opendir, readdir

3. Shell Programming

4. Write C programs to implement the various CPU Scheduling Algorithms

5. Implementation of Semaphores

6. Implementation of Shared memory and IPC

7. Bankers Algorithm for Deadlock Avoidance

8. Implementation of Deadlock Detection Algorithm

9. Implementation of the following Memory Allocation Methods for fixed partition

a) First Fit

b) Worst Fit

c) Best Fit

10. Implementation of Paging Technique of Memory Management

11. Implementation of the following Page Replacement Algorithms

a) FIFO

b) LRU

c) LFU

12. Implementation of the following File Allocation Strategies

a) Sequential

b) Indexed

c) Linked

 CSE Page 6

OUTCOMES:

At the end of the course, learners will be able to:

 Compare the performance of various CPU Scheduling Algorithms.

 Implement Deadlock avoidance and Detection Algorithms.

 Implement Semaphores.

 Create processes and implement IPC.

 Analyze the performance of the various Page Replacement Algorithms.

 Implement File Allocation Strategies.

 CSE Page 7

Exp.

No.
List of Experiments

1
Basics of UNIX commands

2
Write programs using the following system calls of UNIX operating system

fork, exec, getpid, exit, wait, close, stat, opendir, readdir

3
Write Simple programs using Shell

4

Write a C program to simulate the following non-preemptive CPU

scheduling algorithms to find turnaround time and waiting time. a)FCFS

b)SJF c)Round Robin(pre-emptive) d)Priority

5 Write a C program to simulate producer-consumer problem using

semaphores.

6 Write a C Program to implement the Shared memory and IPC

7 Write a C Program to implement the Bankers algorithm for Dead lock

Avoidance

8 Write a C Program to implement the deadlock detection

9

Write a C program to simulate the following contiguous memory allocation

techniques

a) Worst-fit b)Best-fit c)First-fit

10 Write a C program to simulate paging technique of memory management.

11
Write a C program to simulate page replacement algorithms

a) FIFO b) LRU c) LFU

12
Write a C program to simulate the following file allocation strategies.

a) Sequential b) Indexed c) Linked

13

*Write a C program to simulate multi-level queue scheduling algorithm

considering the following scenario. All the processes in the system are

divided into two categories – system processes and user processes. System

processes are to be given higher priority than user processes. Use FCFS

scheduling for the processes in each queue.

14
*Write a C program to simulate disk scheduling algorithms

a) FCFS b) SCAN c) C-SCAN

15
*Write a C program to simulate the concept of Dining-Philosophers problem.

* Content beyond the university prescribed syllabi

 CSE Page 8

EX.NO:1 BASICS OF UNIX COMMANDS

AIM:

To study and execute Unix commands.

PROCEDURE:

Unix is security conscious, and can be used only by those persons who have an account.

Telnet (Telephone Network) is a Terminal emulator program for TCP/IP networks that enables

users to log on to remote servers.

To logon, type telnet server_ipaddress in run window.

User has to authenticate himself by providing username and password. Once verified, a

greeting and $ prompt appears. The shell is now ready to receive commands from the user.

Options suffixed with a hyphen (–) and arguments are separated by space.

GENERAL COMMANDS

Command Function

date Used to display the current system date and time.

date +%D Displays date only

date +%T Displays time only

date +% Y Displays the year part of date

date +% H Displays the hour part of time

cal Calendar of the current month

calyear Displays calendar for all months of the specified year

calmonth year Displays calendar for the specified month of the year

who Login details of all users such as their IP, Terminal No, User

name,

who am i Used to display the login details of the user

tty Used to display the terminal name

uname Displays the Operating System

uname –r Shows version number of the OS (kernel).

uname –n Displays domain name of the server

echo "txt" Displays the given text on the screen

echo $HOME Displays the user's home directory

bc Basic calculator. Press Ctrl+dto quit

lpfile Allows the user to spool a job along with others in a print

queue.

man cmdname Manual for the given command. Press q to exit

 CSE Page 9

history To display the commands used by the user since log on.

exit Exit from a process. If shell is the only process then logs out

 CSE Page 10

DIRECTORY COMMANDS

FILE COMMANDS

Command Function

pwd Path of the present working directory

mkdirdir A directory is created in the given name under the current

directory

mkdirdir1 dir2 A number of sub-directories can be created under one stroke

cd subdir Change Directory. If the subdirstarts with / then path starts from

root (absolute) otherwise from current working directory.

Cd To switch to the home directory.

cd / To switch to the root directory.

cd.. To move back to the parent directory

rmdirsubdir Removes an empty sub-directory.

Command Function

cat >filename To create a file with some contents. To end typing press

Ctrl+d.

The >symbol means redirecting output to a file. (<for input)

cat filename Displays the file contents.

cat >>filename Used to append contents to a file

cpsrc des Copy files to given location. If already exists, it will be

overwritten

cp –i src des Warns the user prior to overwriting the destination file

cp –r src des Copies the entire directory, all its sub-directories and files.

mv old new To rename an existing file or directory. –i option can also be

used

mv f1 f2 f3 dir To move a group of files to a directory.

mv –v old new Display name of each file as it is moved.

Rmfile Used to delete a file or group of files. –i option can also be used

rm * To delete all the files in the directory.

rm –r * Deletes all files and sub-directories

rm –f * To forcibly remove even write-protected files

Ls Lists all files and subdirectories (blue colored) in sorted

manner.

Lsname To check whether a file or directory exists.

lsname* Short-hand notation to list out filenames of a specific pattern.

 CSE Page 11

ls –a Lists all files including hidden files (files beginning with .)

ls –x dirname To have specific listing of a directory.

ls –R Recursive listing of all files in the subdirectories

ls –l Long listing showing file access rights (read/write/execute-rwx

for user/group/others-ugo).

cmpfile1 file2 Used to compare two files. Displays nothing if files are

identical.

Wcfile It produces a statistics of lines (l), words(w), and characters(c).

chmodperm file Changes permission for the specified file. (r=4, w=2, x=1)

chmod 740 file sets all rights for user, read only for groups

and no rights for others

 CSE Page 12

 OUTPUT

GENERAL COMMANDS

[student@veccse ~]date

Sat May 16 06:10:34 UTC 2020

[student@veccse ~]date +%D

05/16/20

[student@veccse ~]date +%T

10:13:11

[student@veccse ~]date +%Y

2020

[student@veccse ~]date +%H

10

[student@veccse ~]cal

May 2020

Su M

o

Tu W

e

Th Fr

1

Sa

2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

 CSE Page 13

[student@veccse ~]cal 2020

2020

January February March

Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa

 1 2 3 4 1 1 2 3 4 5 6 7

5 6 7 8 9 10 11 2 3 4 5 6 7 8 8 9 10 11 12 13 14

12 13 14 15 16 17 18 9 10 11 12 13 14 15 15 16 17 18 19 20 21

19 20 21 22 23 24 25 16 17 18 19 20 21 22 22 23 24 25 26 27 28

 CSE Page 14

 26 27 28 29 30 31 23 24 25 26 27 28 29 29 30 31

April May June

Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa

 1 2 3 4 1 2 1 2 3 4 5 6

5 6 7 8 9 10 11 3 4 5 6 7 8 9 7 8 9 10 11 12 13

12 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20

19 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27

26 27 28 29 30 24 25 26 27 28 29 30 28 29 30

 31

July August September

Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa

 1 2 3 4 1 1 2 3 4 5

5 6 7 8 9 10 11 2 3 4 5 6 7 8 6 7 8 9 10 11 12

12 13 14 15 16 17 18 9 10 11 12 13 14 15 13 14 15 16 17 18 19

19 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26

26 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30

 30 31

October November December

Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa Su M

o

Tu W

e

Th Fr Sa

 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5

4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12

11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19

18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26

25 26 27 28 29 30 31 29 30 27 28 29 30 31

 CSE Page 15

[student@veccse ~]cal 2020

July 2020

Su M

o

Tu W

e

1

Th

2

Fr

3

Sa

4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

[student@veccse ~]who

studentpts/1 May 16 10:05 (172.16.1.14)

[student@veccse ~]who am i

studentpts/1 May 16 10:05 (172.16.1.14)

 CSE Page 16

[student@veccse ~]tty

/dev/pts/1

[student@veccse ~]uname

Linux

[student@veccse ~]echo "hello"

hello

[student@veccse ~]echo $HOME

/home/student

[student@veccse ~]bc bc

1.06

Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc. This is free software

with ABSOLUTELY NO WARRANTY.

For details type `warranty'.

[student@veccse ~]man lp

lp(1) Easy Software Products lp(1)

NAME

lp - print files cancel - cancel jobs SYNOPSIS

lp [-E] [-c] [-d destination] [-h server] [-m] [-n num- copies [-o option] [-q priority] [-s

] [-t title] [-H handling

] [-P page-list] [file(s)]

lp [-E] [-c] [-h server] [-i job-id] [-n num-copies [-o option] [-q priority] [-t title] [-H

handling] [-P page-list] cancel [-a] [-h server] [-u username] [id] [destination] [

destination-id]

DESCRIPTION

lpsubmits files for printing or alters a pending job. Use a filename of "-" to force printing from

the standard input.

cancelcancels existing print jobs. The -a option will remove all jobs from the specified

destination.

OPTIONS

The following options are recognized by lp:

[student@veccse ~]history

1 date

 CSE Page 17

2 date +%D

3 date +%T

4 date +%Y

5 date +%H

6 cal

7 cal 2020

8 cal 7 2020

10 who

11 who am i

12 tty

13 uname

14 uname -r

15 uname -n

16 echo "helloi"

17 echo $HOME

18 bc

19 man lp

20 history

DIRECTORY COMMANDS

[student@veccse]$ pwd

/home/student

[student@veccse ~]mkdir san

[student@veccse ~]mkdir s1 s2

[student@veccse ~]ls

s1 s2 san [student@veccse

~]cd s1 [student@veccse

s1]$ cd / [student@veccse /]$

cd . .

[student@veccse /]$ rmdir s1

[student@veccse ~]$ ls

s2 san

 CSE Page 18

FILE COMMANDS

[student@vecit ~]$ cat>test

hi welcome operating systems lab

[student@vecit ~]$ cat test

hi welcome operating systems lab [student@vecit

~]$ cat>>test fourth semester [student@vecit ~]$

cat test

hi welcome operating systems lab fourth semester

[student@vecit ~]$ cat>test1

[student@vecit ~]$ cp test test1

[student@vecit ~]$ cat test1

hi welcome operating systems lab fourth semester [student@vecit

~]$ cp -i test test1 cp: overwrite `test1'? y [student@vecit ~]$ cp

-r test test1

[student@vecit ~]$ ls

s s2 san swap.sh temp.sh test TEST test1

[student@vecit ~]$ mv san san1 [student@vecit

~]$ ls

s s2 san1 swap.sh temp.sh test TEST test1

[student@vecit ~]$ mv test test1 san1

[student@vecit ~]$ mv -v san1 sannew

`san1' -> `sannew'

[student@vecit ~]$ ls

s s2 sannew swap.sh temp.sh TEST

[student@vecit ~]$ cmp test test1

cmp: test: No such file or directory

RESULT

Thus the study and execution of Unix commands has been completed

successfully.

 CSE Page 19

VIVA QUESTIONS

1. What is the use of cat commands?

2. Define Operating Systems?

3. What is the use of filter/grep/pipe commands?

4. How is unix different from windows

5. What is unix?

6. What is the file structure of unix?

7. What is a kernel?

8. What is the difference between multi-user and multi-tasking?

9. Differentiate relative path from absolute path.

10. What are the differences among a system call, a library function, and a UNIX

command.

 CSE Page 20

EX.NO.2A: IMPLEMENTATION OF FORK, EXEC, GETPID, EXIT, WAIT,

AND CLOSE SYSTEM CALLS.

AIM:

To write a program for implementing process management using the following

system calls of UNIX operating system: fork, exec, getpid, exit, wait, close.

ALGORITHM:

1. Start the program.

2. Read the input from the command line.

3. Use fork() system call to create process, getppid() system call used to get the

parent process ID and getpid() system call used to get the current process ID

4. execvp() system call used to execute that command given on that command line

argument

5. execlp() system call used to execute specified command.

6. Open the directory at specified in command line input.

7. Display the directory contents.

8. Stop the program.

PROGRAM:

#include<stdio.h>

main(int arc,char*ar[])

{

int pid; char s[100]; pid=fork();

if(pid<0)

printf("error");

else if(pid>0)

{

wait(NULL);

printf("\n Parent Process:\n"); printf("\n\tParent

Process id:%d\t\n",getpid());

execlp("cat","cat",ar[1],(char*)0);

error("can’t execute cat %s,",ar[1]);

}

 CSE Page 21

else

{

}

}

printf("\nChild process:");

printf("\n\tChildprocess parent id:\t %d",getppid());

printf(s,"\n\tChild process id :\t%d",getpid());

write(1,s,strlen(s));

printf(" ");

printf(" ");

printf(" "); execvp(ar[2],&ar[2]);

error("can’t execute %s",ar[2]);

OUTPUT:

[root@localhost ~]# ./a.out tst date Child process:

Child process id :

3137 Sat Apr 10 02:45:32 IST 2010

Parent Process:

Parent Process id:3136 sd

dsaASD[root@localhost ~]# cat tst sd dsaASD

RESULT:

Thus the program for process management was written and successfully executed

 CSE Page 22

EX.NO.2B: IMPLEMENTATION OF OPENDIR AND READDIR SYSTEM

CALLS

AIM:

To write a program for implementing Directory management using the following system calls of

UNIX operating system: opendir, readdir.

ALGORITHM:

1. Start the program.

2. Open the directory at specified in command line input.

3. Display the directory contents.

4. Stop the program.

PROGRAM:

#include<sys/types.h>

#include<dirent.h>

#include<stdio.h>

main(int c, char* arg[])

{

DIR *d;

struct dirent *r; int i=0;

d=opendir(arg[1]);

printf("\n\t NAME OF ITEM \n");

while((r=readdir(d)) != NULL)

{

printf("\t %s \n",r->d_name); i=i+1;

}

printf("\n TOTAL NUMBER OF ITEM IN THAT DIRECTORY IS %d

\n",i);

}

OUTPUT:

[root@localhost ~]# cc dr.c [root@localhost ~]#

./a.out lab_print

NAME OF ITEM pri_output.doc sjf_output.doc fcfs_output.doc rr_output.doc ipc_pipe_output.doc

 CSE Page 23

pro_con_prob_output.doc

TOTAL NUMBER OF ITEM IN THAT DIRECTORY IS 8

RESULT:

Thus the program for directory management was written and successfully executed.

VIVA QUESTIONS:

1. What is the purpose of system calls?

2. What system calls have to be executed by a command interpreter or shell in order to

start a new process?

3. When a process creates a new process using the fork() operation, which of the

following state is shared between the parent process and the child process?

4. What is the use of exec system call?

5. What system call is used for closing a file?

6. What is the value return by close system call?

7. What is the system call is used for writing to a file.

8, what are system calls used for creating and removing directories?

 CSE Page 24

EX. NO: 3A: SIMPLE SHELL PROGRAMS

AIM:

To write simple shell scripts using shell programming fundamentals.

DESCRIPTION:

The activities of a shell are not restricted to command interpretation alone. The shell

also has Rudimentary programming features. When a group of commands has to be executed

regularly, they are stored in a file (with extension .sh). All such files are called shell scripts or

shell programs. Shell programs run in interpretive mode.

The original UNIX came with the Bourne shell (sh) and it is universal even today.

Then came a plethora of shells offering new features. Two of them, C shell (csh) and Korn

shell (ksh) has been well accepted by the UNIX fraternity. Linux offers Bash shell (bash) as a

superior alternative to Bourne shell.

Preliminaries

1. Comments in shell script start with #. It can be placed anywhere in a line; the shell

ignores contents to its right. Comments are recommended but not mandatory

2. Shell variables are loosely typed i.e. not declared. Their type depends on the value

assigned. Variables when used in an expression or output must be prefixed by $.

3. The read statement is shell's internal tool for making scripts interactive.

4. Output is displayed using echo statement. Any text should be within quotes.

Escape sequence should be used with –e option.

5. Commands are always enclosed with ̀ ` (back quotes).

6. Expressions are computed using the expr command. Arithmetic operators are + -

* / %. Meta characters * () should be escaped with a \.

7. Multiple statements can be written in a single line separated by ;

8. The shell scripts are executed using the sh command (sh filename).

Swapping values of two variables

Algorithm

Step 1 : Start

 CSE Page 25

Step 2 : Read the values of a and b

Step 3 : Interchange the values of a and b using another variable t as follows: t = a a = b b = t

Step 4 : Print a and b Step 5 :

Stop

Program (swap.sh) # Swapping values

echo -n "Enter value for A : " read a echo -

n "Enter value for B : " read b t=$a a=$b

b=$t

echo "Values after Swapping" echo "A Value is $a" echo

"B Value is $b"

Output

[student@vecit ~]$ sh swap.sh Enter Value for A:5 Enter Value

for B:6 Values after Swapping A value is 6 B values is 5

[student@vecit ~]$

Farenheit to Centigrade Conversion

Algorithm

Step 1: Start

Step 2: Read Fahrenheit value

Step 3: Convert Fahrenheit to centigrade using the formulae:

(Fahrenheit – 32) × 5/9

Step 4: Print centigrade Step 5:

Stop

Program

Degree conversion

echo -n "Enter Fahrenheit : " read f

c=`expr\($f - 32 \) * 5 / 9`

echo "Centigrade is : $c"

Output

[student@vecit ~]$ sh temp.sh Enter Fahrenheit:4 Centrigrade is: -15 [student@vecit ~]$

RESULT

 CSE Page 26

Thus using programming basics, simple shell scripts were executed

EX.NO.3B: CONDITIONAL

CONSTRUCTS AIM:

To write shell scripts using decision-making constructs.

DESCRIPTION:

Shell supports decision-making using if statement. The if statement like its counterpart in

programming languages has the following formats. The first construct executes the statements

when the condition is true. The second construct adds an optional else to the first one that has

different set of statements to be executed depending on whether the condition is true or false. The

last one is an elif ladder, in which conditions are tested in sequence, but only one set of

statements is executed.

if [condition]

then statements

fi

if [condition]

then statements

else

statements

fi

if [condition]

then

statements elif

[condition]

then

statements .. .

else

statements

fi

The set of relational and logical operators used in conditional expression is given below. The

numeric comparison in the shell is confined to integer values only.

Operator Description

-eq Equal to

-ne Not equal to

-gt Greater than

-ge Greater than or equal to

-lt Less than

-le Less than or equal to

-a Logical AND

-o Logical OR

! Logical NOT

 CSE Page 27

Odd or even

Algorithm

Step 1 : Start

Step 2 : Read number

Step 3 : If number divisible by 2 then Print "Number is Even" Step 3.1

: else Print "Number is Odd"

Step 4 : Stop Program

Odd or even using if-else

echo -n "Enter a non-zero number : " readnum rem=`expr

$num % 2` if [$rem -eq 0]

then

echo "$num is Even" else echo

"$num is Odd" fi Output

[student@vecit ~]$ sh oddeven.sh

Enter a non-zero number : 12 12 is Even

String comparison

Algorithm

Step 1 : Start

Step 2 : Read strings str1 and str2

Step 3 : If str1 = str2 then Print "Strings are the same" Step 3.1 :

else Print "Strings are distinct"

Step 4 : Stop

Program

echo -n "Enter the first string : " read s1 echo -n

"Enter the second string : " read s2 if [$s1 == $s2]

then

echo "Strings are the same" else echo

"Strings are distinct" fi Output

[student@vecit ~]$ sh strcomp.sh

Enter the first string :ece-a Enter the second string : ECE-A Strings are distinct

 CSE Page 28

RESULT

Thus using if statement scripts with conditional expressions were executed

EX.NO. 3C: MULTI-WAY

BRANCHING AIM:

To write shell scripts using case construct to match patterns.

DESCRIPTION:

The case statement is used to compare a variables value against a set of constants (integer,

character, string, range). If it matches a constant, then the set of statements followed after)is

executed till a ;; is encountered. The optional default block is indicated by *. Multiple

constants can be specified in a single pattern separated by

|.

case variable in

constant1)

statements ;;

constant2)

statements ;;

. . .

constantN) statements ;;

*)

statements

esac

Simple Calculator

Algorithm

Step 1 : Start

Step 2 : Read operands a and b Step 3 :

Display operation menu Step 4 : Read

option

Step 5 : If option = 1 then Calculate c = a + b

Step 5.1 : else if option = 2 then Calculate c = a – b Step 5.2 :

else if option = 3 then Calculate c = a * b Step 5.3 : else if

option = 4 then Calculate c = a / b Step 5.4 : else if option = 5

then Calculate c = a % b

 CSE Page 29

Step 5.5 : else

Print "Invalid option" Step 6

: Print c

Step 7 : Stop

Program

Arithmetic operations--multiple statements in a block echo -n "Enter the two numbers : "

read a b

echo " 1. Addition" echo " 2. Subtraction" echo "

3. Multiplication" echo " 4. Division"

echo " 5. Modulo Division" echo -n "Enter the option : " read option case

$option in

1) c=`expr $a + $b` echo "$a + $b = $c";;

2) c=`expr $a - $b` echo "$a - $b = $c";;

3) c=`expr $a * $b` echo "$a * $b = $c";;

4) c=`expr $a / $b` echo "$a / $b = $c";;

5) c=`expr $a % $b` echo "$a % $b = $c";;

*) echo "Invalid Option" esac

Output

[student@vecit ~]$ shsimplecal.sh Enter

the two numbers : 2 4

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Modulo Division Enter the option : 1 2 + 4 = 6

RESULT

Thus using case statement, shell scripts were executed.

 CSE Page 30

EX .NO.3D: LOOPING

AIM

To write shell scripts using looping statements.

DESCRIPTION:

Shell supports a set of loops such as for, while and until to execute a set of statements repeatedly. The

body of the loop is contained between do and done statement.

The for loop doesn't test a condition, but uses a list instead.

For variable in list

do

statements

done

The while loop executes the statements as long as the condition remains true.

while [condition]

do

statements

done

The until loop complements the while construct in the sense that the statements are executed

as long as the condition remains false.

until [condition]

do

statements

done

Armstrong Number

Algorithm

Step 1 : Start

Step 2 : Read number

Step 3 : Initialize 0 to sum and number to num

Step 4 : Extract last digit by computing number modulo 10 Step 5 :

Cube the lastdigitand add it to sum

Step 6 : Divide number by 10

 CSE Page 31

Step 7: Repeat steps 4–6 until number > 0

Step 8 : If sum = number then Print “Armstrong number” Step 8.1 :

else Print “Not an Armstrong number” Step 9 : Stop Program

(armstrong.sh)

Armstrong number using while loop echo -n

"Enter a number : "

read n a=$n s=0 while [$n

-gt 0] do r=`expr $n % 10`

s=`expr $s + \($r * $r * $r \)` n=`expr $n / 10` done

if [$a -eq $s] then

echo "Armstrong Number" else

echo -n "Not an Armstrong number" fi

OUTPUT:

[student@vecit ~]$ sh armstrong.sh Enter a

number : 370 Armstrong Number RESULT:

Thus using loops, iterative scripts were executed

VIVA QUESTIONS

1. What is Shell?

2. What are some common shells and what are their indicators?

3. Briefly describe the Shell’s responsibilities

4. What are shell variables?

5. What is Bash Shell?

6. Differentiate cat command from more command.

7. What does this command do? cat food 1 > kitty

8. What’s the conditional statement in shell scripting?

9. How do you do number comparison in shell scripts?

10. How do you define a function in a shell script?

 CSE Page 32

EX.NO.4A: IMPLEMENTATION OF FCFS SCHEDULING

ALGORITHM AIM

To write a C program to implement First Come First Serve scheduling algorithm.

DESRIPTION:

For FCFS scheduling algorithm, read the number of processes/jobs in the system, their CPU

burst times. The scheduling is performed on the basis of arrival time of the processes

irrespective of their other parameters. Each process will be executed according to its arrival

time. Calculate the waiting time and turnaround time of each of the processes accordingly.

.ALGORITHM:

Step 1: Start the program.

Step 2: Get the input process and their burst time.

Step 3: Sort the processes based on order in which it requests CPU.

Step 4: Compute the waiting time and turnaround time for each process. Step 5:

Calculate the average waiting time and average turnaround time. Step 6: Print the

details about all the processes.

Step 7: Stop the program.

PROGRAM

PROGRAM:

#include<stdio.h>

Void main()

{

int bt[50],wt[80],at[80],wat[30],ft[80],tat[80];

int i,n;

float

awt,att,sum=0,sum1=0; char

p[10][5];

printf("\nenter the number of process

 ")

; scanf("%d",&n);

printf("\nEnter the process name and burst-time:");

for(i=0;i<n;i++)

 CSE Page 33

scanf("%s%d",p[i],&bt[i]);

printf("\nEnter the arrival-time:");

for(i=0;i<n;i++)

scanf("%d",&at[i]

); wt[0]=0;

for(i=1;i<=n;i++)

wt[i]=wt[i-1]+bt[i-

1]; ft[0]=bt[0];

for(i=1;i<=n;i++)

ft[i]=ft[i-1]+bt[i];

printf("\n\n\t\t\tGANTT CHART\n");

printf("\n \n");

for(i=0;i<n;i++)

printf("|\t%s\t",p[i]);

printf("|\t\n");

printf("\n \n");

printf("\n");

for(i=0;i<n;i++

)

printf("%d\t\t",wt[i]);

printf("%d",wt[n]+bt[n]);

printf("\n \n");

printf("\n");

for(i=0;i<n;i++

)

wat[i]=wt[i]-

at[i]; for(i=0;i<n;i++)

tat[i]=wat[i]-at[i];

printf("\n FIRST COME FIRST SERVE\n");

printf("\n Process Burst-time Arrival-time Waiting-time Finish-time

Turnaround- time\n");

for(i=0;i<n;i++)

printf("\n\n %d%s \t %d\t\t %d \t\t %d\t\t %d \t\t

%d",i+1,p[i],bt[i],at[i],wat[i],ft[i],tat[i]);

for(i=0;i<n;i++)

sum=sum+wat[i];

awt=sum/n;

 CSE Page 34

for(i=0;i<n;i++)

sum1=sum1+bt[i]+wt[i]

; att=sum1/n;

printf("\n\nAverage waiting time:%f",awt);

printf("\n\nAverage turnaround time:%f",att);

}

OUTPUT:

enter the number of process 3

Enter the process name and burst-time:

p1 2

p2 3

p3 4

Enter the arrival-time:0 1

2 GANTT CHART

| p1 | p2 | p3 |

0

2

5

9

FIRST COME FIRST SERVE

Process Burst-time Arrival-time Waiting-

time

Finish-time Turnaround-time

p1 2 0 0 2 2

p2 3 1 1 5 4

p3 4 2 3 9 7

Average waiting time:1.333333

Average turnaround time:5.333333

RESULT:

The FCFS scheduling algorithm has been implemented in C.

 CSE Page 35

EX.NO.4B : IMPLEMENTATION OF SJF SCHEDULING

ALGORITHM AIM

To write a C program to implement shortest job first (non-pre-emptive) scheduling algorithm.

DESCRIPTION:

For SJF scheduling algorithm, read the number of processes/jobs in the system, their CPU burst

times. Arrange all the jobs in order with respect to their burst times. There may be two jobs in

queue with the same execution time, and then FCFS approach is to be performed. Each process

will be executed according to the length of its burst time. Then calculate the waiting time and

turnaround time of each of the processes accordingly.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the input process and their burst time. Step 3:

Sort the processes based on burst time.

Step 4: Compute the waiting time and turnaround time for each process. Step 5:

Calculate the average waiting time and average turnaround time. Step 6: Print the

details about all the processes.

Step 7: Stop the program.

PROGRAM:

#include<stdio.h> void

main()

{

int i,j,n,bt[30],at[30],st[30],ft[30],wat[30],wt[30],temp,temp1,tot,tt[30]; float

awt, att;

int p[15];

wat[1]=0;

printf("ENTER THE NO.OF PROCESS");

scanf("%d",&n);

printf("\nENTER THE PROCESS NUMBER,BURST TIME AND

ARRIVAL TIME");

 CSE Page 36

for(i=1;i<=n;i++)

{

scanf("%d\t %d\t %d",&p[i],&bt[i],&at[i]);

}

printf("\nPROCESS\tBURSTTIME\tARRIVALTIME");

for(i=1;i<=n;i++)

{

printf("\np%d\t%d\t\t%d",p[i],bt[i],at[i]);

}

for(i=1;i<=n;i++)

{

for(j=i+1;j<=n;j++)

{

if(bt[i]>bt[j])

{

temp=bt[i];

bt[i]=bt[j];

bt[j]=temp;

temp1=p[i];

p[i]=p[j];

p[j]=temp1;

}

}

if(i==1)

{

}

else

{

st[1]=0;

ft[1]=bt[1]; wt[1]=0;

st[i]=ft[i-1];

ft[i]=st[i]+bt[i];

 CSE Page 37

wt[i]=st[i];

}

}

printf("\n\n\t\t\tGANTT CHART\n");

printf("\n \n");

for(i=1;i<=n;i++)

printf("|\tp%d\t",p[i]); printf("|\t\n");

printf("\n \n");

printf("\n");

for(i=1;i<=n;i++)

printf("%d \t\t",wt[i]);

printf("%d",wt[n]+bt[n]);

printf("\n \n");

for(i=2;i<=n;i++)

wat[i]=wt[i]-at[i];

for(i=1;i<=n;i++)

tt[i]=wat[i]+bt[i]-at[i];

printf("\nPROCESS\tBURSTTIME\tARRIVALTIME\tWAITINGTIME\tT

URNAROUNDTI ME\n");

for(i=1;i<=n;i++)

{

printf("\np%d %5d %15d %15d %15d",p[i],bt[i],at[i],wat[i],tt[i]);

}

for(i=1,tot=0;i<=n;i++)

tot+=wt[i];

awt=(float)tot/n;

printf("\n\n\n AVERAGE WAITING TIME=%f",awt); for(i=1,tot=0;i<=n;i++)

tot+=tt[i];

att=(float)tot/n;

printf("\n\n AVERAGE TURNAROUND TIME=%f",att);

 CSE Page 38

}

OUTPUT:

enter the no.of process3

enter the process number,burst time and arrival time 1 8 1

2 5 1

3 3 1

PROCES

S

BURSTTIM

E

ARRIVALTIM

E

WAITINGTIM

E

TURNAROUNDTIM

E

p3 3 1 0 2

p2 5 1 2 6

p1 8 1 7 14

AVERAGE WAITING TIME=3.666667 AVERAGE

TURNAROUND TIME=7.333333

RESULT:

The SJF scheduling algorithm has been implemented in C.

 CSE Page 39

EX.NO.4C: IMPLEMENTATION OF ROUND ROBINSCHEDULING

ALGORITHM

AIM:

To write a C program to implement Round Robin scheduling algorithm.

DESCRIPTION:

For round robin scheduling algorithm, read the number of processes/jobs in the system,

their CPU burst times, and the size of the time slice. Time slices are assigned to each process

in equal portions and in circular order, handling all processes execution. This allows every

process to get an equal chance. Calculate the waiting time and turnaround time of each of the

processes accordingly.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the input process and their burst time. Step 3:

Sort the processes based on priority.

Step 4: Compute the waiting time and turnaround time for each process. Step 5: Calculate the

average waiting time and average turnaround time. Step 6: Print the details about all the

processes.

Step 7: Stop the program.

PROGRAM:

#include<stdio.h> voidmain()

{

int ct=0,y[30],j=0,bt[10],cwt=0; int

tq,i,max=0,n,wt[10],t[10],at[10],tt[10],b[10];

float a=0.0,s=0.0;

char p[10][10];

printf("\n enter the no of process:");

scanf("%d",&n);

printf("\nenter the time quantum");

scanf("%d",&tq);

printf("\nenter the process name,bursttime,arrival time");

 CSE Page 40

for(i=0;i<n;i++)

{

scanf("%s",p[i]);

scanf("%d",&bt[i]);

scanf("%d",&at[i]); wt[i]=t[i]=0;

b[i]=bt[i];

}

printf("\n\t\tGANTT CHART");

printf("\n \n");

for(i=0;i<n;i++)

{

if(max<bt[i])

max=bt[i];

}

while(max!=0)

{

for(i=0;i<n;i++)

{

if(bt[i]>0)

{

if(ct==0)

wt[i]=wt[i]+cwt;

else

}

wt[i]=wt[i]+(cwt-t[i]);

if(bt[i]==0)

cwt=cwt+0;

else if(bt[i]==max)

{

if(bt[i]>tq)

{

cwt=cwt+tq;

 CSE Page 41

}

else

{

}

bt[i]=bt[i]-tq;

max=max-tq;

cwt=cwt+bt[i];

bt[i]=0;

max=0;

printf("|\t%s",p[i]);

y[j]=cwt;

j++;

}

else if(bt[i]<tq)

{

cwt=cwt+bt[i]; bt[i]=0;

printf("|\t%s",p[i]);

y[j]=cwt;

j++;

}

else if(bt[i]>tq)

{

cwt=cwt+tq;

bt[i]=bt[i]-tq;

printf("|\t%s",p[i]);

y[j]=cwt;

j++;

}

else if(bt[i]==tq)

{

cwt=cwt+bt[i];

 CSE Page 42

printf("|\t%s",p[i]); bt[i]=0;

y[j]=cwt; j++;

}

t[i]=cwt;

}

ct=ct+1;

}

for(i=0;i<n;i++)

{

wt[i]=wt[i]-at[i];

a=a+wt[i];

tt[i]=wt[i]+b[i]-at[i];

s=s+tt[i];

}

a=a/n; s=s/n;

printf("\n ");

printf("\n0");

for(i=0;i<j;i++)

printf("\t%d",y[i]);

printf("\n");

printf("\n "); printf("\n\t\t ROUND ROBIN\n");

printf("\n Process Burst-time Arrival-time Waiting-time Turnaround-

time\n");

for(i=0;i<n;i++)

printf("\n\n %d%s \t %d\t\t %d \t\t %d\t\t %d", i+1, p[i], b[i], at[i], wt[i],

tt[i]);

printf("\n\nAvg waiting time=%f",a);

printf("\n\nAvgturn around time=%f",s);

}

 CSE Page 43

OUTPUT:

enter the no of process:3 enter

the time quantum2

enter the process name, bursttime, arrival time

p1 2 0

p2 3 1

p3 4 2

GANTT CHART

| p1| p2| p3| p2| p3

0 2 4 6 7 9

ROUND ROBIN

Process Burst-time Arrival-time Waiting-time Turnaround-time

p1 2 0 0 2

p2 3 1 3 5

p3 4 2 3 5

Avg Waiting Time=2.000000 Avg

Turnaround Time=4.000000

RESULT

The Round Robin scheduling algorithm has been implemented in C.

 CSE Page 44

EX.NO.4D: IMPLEMENTATION OF PRIORITY SCHEDULING

ALGORITHM AIM

To write a C program to implement Priority Scheduling algorithm.

DESCRIPTION:

For priority scheduling algorithm, read the number of processes/jobs in the system, their CPU

burst times, and the priorities. Arrange all the jobs in order with respect to their priorities.

There may be two jobs in queue with the same priority, and then FCFS approach is to be

performed. Each process will be executed according to its priority. Calculate the waiting time

and turnaround time of each of the processes accordingly.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the input process and their burst time. Step 3:

Sort the processes based on priority.

Step 4: Compute the waiting time and turnaround time for each process. Step 5:

Calculate the average waiting time and average turnaround time. Step 6: Print the

details about all the processes.

Step 7: Stop the program.

PROGRAM:

#include<stdio.h>

#include<string.h> void

main()

{

int bt[30],pr[30],np; intwt[30],tat[30],wat[30],at[30],ft[30]; int

i,j,x,z,t;

float sum1=0,sum=0,awt,att;

char p[5][9],y[9];

printf("\nenter the number of process");

scanf("%d",&np);

printf("\nEnter the process,burst-time and priority:");

 CSE Page 45

for(i=0;i<np;i++)

scanf("%s%d%d",p[i],&bt[i],&pr[i]);

printf("\nEnter the arrival-time:");

for(i=0;i<np;i++)

scanf("%d",&at[i]);

for(i=0;i<np;i++)

for(j=i+1;j<np;j++)

{

if(pr[i]>pr[j])

{

x=pr[j];

pr[j]=pr[i];

pr[i]=x;

strcpy(y,p[j]);

strcpy(p[j],p[i]);

strcpy(p[i],y);

z=bt[j]; b

t[j]=bt[i];

bt[i]=z;

}

}

wt[0]=0;

for(i=1;i<=np;i++)

wt[i]=wt[i-1]+bt[i-1];

ft[0]=bt[0]; for(i=1;i<np;i++)

ft[i]=ft[i-1]+bt[i];

printf("\n\n\t\tGANTT CHART\n");

printf("\n \n");

for(i=0;i<np;i++)

printf("|\t%s\t",p[i]);

 CSE Page 46

printf("|\t\n");

printf("\n \n");

printf("\n");

for(i=0;i<=np;i++)

printf("%d\t\t",wt[i]);

printf("\n \n");

printf("\n");

for(i=0;i<np;i++)

wat[i]=wt[i]-at[i];

for(i=0;i<np;i++)

tat[i]=wat[i]-at[i]; printf("\nPRIORITY

SCHEDULING:\n");

printf("\nProcess Priority Burst-time Arrival-time Waiting-time Turnaround-

time");

for(i=0;i<np;i++)

printf("\n\n%d%s\t%d\t\t%d\t\t%d\t%d\t\t%d",i+1,p[i],pr[i],bt[i],a t[i],wt[i],tat[i]);

for(i=0;i<np;i++)

sum=sum+wat[i];

awt=sum/np; for(i=0;i<np;i++)

sum1=sum1+tat[i];

att=sum1/np;

printf("\n\nAverage waiting time:%f",awt); printf("\n\nAverageturn around time

is:%f",att);

}

OUTPUT:

Enter the number of process3

Enter the process, burst-time and priority: p1 3 3

p2 4 2

p3 5 1

 CSE Page 47

Enter the arrival-time: 0 1 2

GANTT CHART

| p3 | p2 | p1 |

0

5

9

12

PRIORITY SCHEDULING:

Process Priority Burst-time Arrival-time Waiting-time Turnaround-time

p3 1 5 0 0 0

p2 2 4 1 5 3

p1 3 3 2 9 5

Average waiting time: 3.666667 Average

turnaround time is: 2.666667 RESULT

The Priority scheduling algorithm has been implemented in C.

VIVA QUESTIONS:

1. Define operating system?

2. What are the different types of operating systems?

3. Define a process?

4. What is CPU Scheduling?

5. Define arrival time, burst time, waiting time, turnaround time?

6. What is the advantage of round robin CPU scheduling algorithm?

7. Which CPU scheduling algorithm is for real-time operating system?

8. In general, which CPU scheduling algorithm works with highest waiting time?

9. Is it possible to use optimal CPU scheduling algorithm in practice?

10. What is the real difficulty with the SJF CPU scheduling algorithm?

ASSIGNMENT QUESTIONS

1. Write a C program to implement round robin CPU scheduling algorithm for the

following given scenario. All the processes in the system are divided into two

categories – system processes and user processes. System processes are to be given

higher priority than user processes. Consider the time quantum size for the system

processes and user processes to be 5 msec and 2 msec respectively.

2. Write a C program to simulate pre-emptive SJF CPU scheduling algorithm.

 CSE Page 48

EX.NO:5 PRODUCER CONSUMER PROBLEM USING

SEMAPHORE AIM:

To write a C program to implement the Producer & consumer Problem (Semaphore)

DESCRIPTION:

Producer-consumer problem, is a common paradigm for cooperating processes. A producer

process produces information that is consumed by a consumer process. One solution to the

producer-consumer problem uses shared memory. To allow producer and consumer processes to

run concurrently, there must be available a buffer of items that can be filled by the producer and

emptied by the consumer. This buffer will reside in a region of memory that is shared by the

producer and consumer processes. A producer can produce one item while the consumer is

consuming another item. The producer and consumer must be synchronized, so that the consumer

does not try to consume an item that has not yet been produced.

ALGORITHM:

Step 1: The Semaphore mutex, full & empty are initialized.

Step 2: In the case of producer process

i) Produce an item in to temporary variable.

ii) If there is empty space in the buffer check the mutex value for enter into the

critical section.

iii) If the mutex value is 0, allow the producer to add value in the temporary

variable to the buffer.

Step 3: In the case of consumer process

i) It should wait if the buffer is empty

ii) If there is any item in the buffer check for mutex value, if the mutex==0,

remove item from buffer

iii) Signal the mutex value and reduce the empty value by 1.

iv) Consume the item.

Step 4: Print the result

 CSE Page 49

PROGRAM :

#define BUFFERSIZE 10

int mutex,n,empty,full=0,item,item1;

int buffer[20];

int in=0,out=0,mutex=1; void

wait(int s)

{

while(s<0)

{

}

s--;

}

printf(“\nCannot add an item\n”);

exit(0);

void signal(int s)

{

s++;

}

void producer()

{

do

{

wait (empty);

wait(mutex);

printf(“\nEnter an item:”);

scanf(“%d”,&item);

buffer[in]=item;

in=in+1;

signal(mutex);

signal(full);

 CSE Page 50

}

while(in<n);

}

void consumer()

{

do

{

wait(full);

wait(mutex);

item1=buffer[out];

printf(“\nConsumed item =%d”,item1); out=out+1;

signal(mutex);

signal(empty);

}

while(out<n);

}

void main()

{

printf(“Enter the value of n:”);

scanf(“%d “,&n);

empty=n;

while(in<n)

producer();

while(in!=out)

consumer();

}

OUTPUT:

$ cc prco.c

$ a.out

Enter the value of n :3 Enter the

item:2

 CSE Page 51

Enter the item:5 Enter the

item:9 consumed item=2

consumed item=5 consumed

item=9

$

RESULT:

Thus the program for solving producer and consumer problem using semaphore was executed

successfully.

VIVA QUESTIONS

1. Define Semaphore?

2. What is use of wait and signal functions?

3. What is mutual exclusion?

4. Define producer consumer problem?

5. What is the need for process synchronization?

6. Discuss the consequences of considering bounded and unbounded buffers in producer-

consumer problem?

7. Can producer and consumer processes access the shared memory concurrently? If not

which technique provides such a benefit?

ASSIGNMENT QUESTION:

1.Write a C program to simulate producer-consumer problem using message-passing system.

 CSE Page 52

EX.NO:6 IMPLEMENTATION OF SHARED MEMORY

AND IPC AIM:

To write a program for developing Application using Inter Process

communication with pipes.

ALGORITHM:

1. Start the program.

2. Read the input from parent process and perform in child process.

3. Write the date in parent process and read it in child process.

4. Data is read.

5. Stop the program.

SHARED MEMORY FOR WRITER PROCESS

#include <iostream> #include

<sys/ipc.h> #include

<sys/shm.h> #include

<stdio.h> using namespace

std; int main()

{

// ftok to generate unique key key_t key

= ftok("shmfile",65);

// shmget returns an identifier in shmid

int shmid = shmget(key,1024,0666|IPC_CREAT);

// shmat to attach to shared memory

char *str = (char*) shmat(shmid,(void*)0,0);

printf("Write Data : ");

gets(str);

printf("Data written in memory: %s\n",str);

//detach from shared memory

shmdt(str);

return 0;

 CSE Page 53

}

SHARED MEMORY FOR READER PROCESS

#include <iostream> #include

<sys/ipc.h> #include

<sys/shm.h> #include

<stdio.h> using namespace

std; int main()

{

// ftok to generate unique key key_t key

= ftok("shmfile",65);

// shmget returns an identifier in shmid

int shmid = shmget(key,1024,0666|IPC_CREAT);

// shmat to attach to shared memory

char *str = (char*) shmat(shmid,(void*)0,0);

printf("Data read from memory: %s\n",str);

//detach from shared memory

shmdt(str);

// destroy the shared memory

shmctl(shmid,IPC_RMID,NULL);

return 0;

}

OUTPUT:

 CSE Page 54

RESULT:

Thus the program was executed successfully.

VIVA QUESTIONS

1. What is IPC?

2. What is the use shared memory?

3. List commands used for shared memory communication?

4. What is the function of shmget function?

5. What is the use of shmctl fuction?

 CSE Page 55

EX.NO: 7 DEADLOCK

AVOIDANCE AIM:

To Simulate Algorithm for Deadlock avoidance

DESCRIPTION:

In a multiprogramming environment, several processes may compete for a finite number of

resources. A process requests resources; if the resources are not available at that time, the process

enters a waiting state. Sometimes, a waiting process is never again able to change state, because

the resources it has requested are held by other waiting processes. This situation is called a

deadlock. Deadlock avoidance is one of the techniques for handling deadlocks. This approach

requires that the operating system be given in advance additional information concerning

which resources a process will request and use during its lifetime. With this additional

knowledge, it can decide for each request whether or not the process should wait. To decide

whether the current request can be satisfied or must be delayed, the system must consider the

resources currently available, the resources currently allocated to each process, and the future

requests and releases of each process. Banker’s algorithm is a deadlock avoidance algorithm

that is applicable to a system with multiple instances of each resource type

ALGORITHM:

Step 1: Start the Program

Step 2: Get the values of resources and processes. Step 3:

Get the avail value.

Step 4: After allocation find the need value.

Step 5: Check whether its possible to allocate. If possible it is safe state

Step 6: If the new request comes then check that the system is in safety or not if we allow the

request.

Step 7: Stop the execution

10.Stop the program

PROGRAM:

#include<stdio.h>

 CSE Page 56

void main()

{

int pno,rno,i,j,prc,count,t,total;

count=0;

clrscr();

printf("\n Enter number of process:");

scanf("%d",&pno);

printf("\n Enter number of resources:");

scanf("%d",&rno);

for(i=1;i< =pno;i++)

{

flag[i]=0;

}

printf("\n Enter total numbers of each resources:");

for(i=1;i<= rno;i++)

scanf("%d",&tres[i]);

printf("\n Enter Max resources for each process:");

for(i=1;i<= pno;i++)

{

printf("\n for process %d:",i);

for(j=1;j<= rno;j++)

scanf("%d",&max[i][j]);

}

printf("\n Enter allocated resources for each process:");

for(i=1;i<= pno;i++)

{

printf("\n for process %d:",i);

for(j=1;j<= rno;j++)

scanf("%d",&allocated[i][j]);

}

printf("\n available resources:\n"); for(j=1;j<=

rno;j++)

 CSE Page 57

{

avail[j]=0;

total=0;

for(i=1;i<= pno;i++)

{

total+=allocated[i][j];

}

avail[j]=tres[j]-total;

work[j]=avail[j];

printf(" %d \t",work[j]);

}

do

{

for(i=1;i<= pno;i++)

{

for(j=1;j<= rno;j++)

{

need[i][j]=max[i][j]-allocated[i][j];

}

}

printf("\n Allocated matrix Max need");

for(i=1;i<= pno;i++)

{

printf("\n");

for(j=1;j<= rno;j++)

{

printf("%4d",allocated[i][j]);

}

printf("|");

for(j=1;j<= rno;j++)

{

printf("%4d",max[i][j]);

 CSE Page 58

}

printf("|");

for(j=1;j<= rno;j++)

{

}

prc=0;

printf("%4d",need[i][j]);

}

for(i=1;i<= pno;i++)

{

if(flag[i]==0)

{

prc=i;

for(j=1;j<= rno;j++)

{

if(work[j]< need[i][j])

{

prc=0;

break;

}

}

}

if(prc!=0)

break;

}

if(prc!=0)

{

printf("\n Process %d completed",i);

count++;

printf("\n Available matrix:");

for(j=1;j<= rno;j++)

 CSE Page 59

{

work[j]+=allocated[prc][j];

allocated[prc][j]=0;

max[prc][j]=0; flag[prc]=1;

printf(" %d",work[j]);

}

}

}while(count!=pno&&prc!=0);

if(count==pno)

printf("\nThe system is in a safe state!!");

else

printf("\nThe system is in an unsafe state!!");

getch();

}

OUTPUT

Enter number of process:5 Enter

number of resources:3

Enter total numbers of each resources:10 5 7 Enter Max

resources for each process:

for process 1: 7 5 3

for process 2: 3 2 2

for process 3: 9 0 2

for process 4: 2 2 2

for process 5: 4 3 3

Enter allocated resources for each process: for

process 1: 0 1 0

for process 2: 3 0 2

for process 3: 3 0 2

for process 4: 2 1 1

for process 5: 0 0 2

 CSE Page 60

available resources:

2 3 0

Allocated matrix Max need

0 1 0| 7 5 3| 7 4 3

3 0 2| 3 2 2| 0 2 0

3 0 2| 9 0 2| 6 0 0

2 1 1| 2 2 2| 0 1 1

0 0 2| 4 3 3| 4 3 1

Process 2 completed

Available matrix: 5 3 2

Allocated matrix Max need

0 1 0| 7 5 3| 7 4 3

0 0 0| 0 0 0| 0 0 0

3 0 2| 9 0 2| 6 0 0

2 1 1| 2 2 2| 0 1 1

0 0 2| 4 3 3| 4 3 1

Process 4 completed

Available matrix: 7 4 3

Allocated matrix Max need

0 1 0| 7 5 3| 7 4 3

0 0 0| 0 0 0| 0 0 0

3 0 2| 9 0 2| 6 0 0

0 0 0| 0 0 0| 0 0 0

0 0 2| 4 3 3| 4 3 1

Process 1 completed

Available matrix: 7 5 3

Allocated matrix Max need

0 0 0| 0 0 0| 0 0 0

0 0 0| 0 0 0| 0 0 0

3 0 2| 9 0 2| 6 0 0

 CSE Page 61

0 0 0| 0 0 0| 0 0 0

0 0 2| 4 3 3| 4 3 1

Process 3 completed

Available matrix: 10 5 5

Allocated matrix Max need

0 0 0| 0 0 0| 0 0 0

0 0 0| 0 0 0| 0 0 0

0 0 0| 0 0 0| 0 0 0

0 0 0| 0 0 0| 0 0 0

0 0 2| 4 3 3| 4 3 1

Process 5 completed

Available matrix: 10 5 7

The system is in a safe state!!

RESULT:

Thus the program to implement the deadlock avoidance was executed

and verified.

VIVA QUESTIONS:

1. How to recover once the Deadlock has been detected?

2. List the steps to illustrate the Deadlock Detection Algorithm.

3. What are the advantages to check each resource request?

4. .How to fill the Allocation matrix?

5. How to identify whether the process exist in deadlock or not?

 CSE Page 62

EX.NO:8 DEADLOCK DETECTION

ALGORITHM AIM:

To Simulate Algorithm for Deadlock detection

ALGORITHM:

Step 1: Start the Program

Step 2: Get the values of resources and processes. Step 3:

Get the avail value..

Step 4: After allocation find the need value. Step 5:

Check whether its possible to allocate.

Step 6: If it is possible then the system is in safe state. Step 7:

Stop the execution

PROGRAM

#include<stdio.h>

#include<conio.h> int

max[100][100]; i nt

alloc[100][100]; int

need[100][100]; int

avail[100];

int n,r;

void input(); void

show(); void cal();

int main()

{

int i,j;

printf("********** Deadlock Detection Algo ************\n"); input();

show();

cal();

getch();

return 0;

 CSE Page 63

}

void input()

{

int i,j;

printf("Enter the no of Processes\t");

scanf("%d",&n);

printf("Enter the no of resource instances\t"); scanf("%d",&r);

printf("Enter the Max Matrix\n");

for(i=0;i<n;i++)

{

for(j=0;j<r;j++)

{

scanf("%d",&max[i][j]);

}

}

printf("Enter the Allocation Matrix\n");

for(i=0;i<n;i++)

{

for(j=0;j<r;j++)

{

scanf("%d",&alloc[i][j]);

}

}

printf("Enter the available Resources\n");

for(j=0;j<r;j++)

{

scanf("%d",&avail[j]);

}

}

void show()

 CSE Page 64

{

int i,j;

printf("Process\t Allocation\t Max\t Available\t");

for(i=0;i<n;i++)

{

printf("\nP%d\t ",i+1);

for(j=0;j<r;j++)

{

printf("%d ",alloc[i][j]);

}

printf("\t");

for(j=0;j<r;j++)

{

printf("%d ",max[i][j]);

}

printf("\t");

if(i==0)

{

for(j=0;j<r;j++)

printf("%d ",avail[j]);

}

}

}

void cal()

{

int finish[100],temp,need[100][100],flag=1,k,c1=0; int dead[100]; int

safe[100]; int i,j;

for(i=0;i<n;i++)

{

finish[i]=0;

}

//find need matrix

 CSE Page 65

for(i=0;i<n;i++)

{

for(j=0;j<r;j++)

{

need[i][j]=max[i][j]-alloc[i][j];

}

}

while(flag)

{

flag=0;

for(i=0;i<n;i++)

{

int c=0;

for(j=0;j<r;j++)

{

if((finish[i]==0)&&(need[i][j]<=avail[j]))

{

c++;

if(c==r)

{

for(k=0;k<r;k++)

{

avail[k]+=alloc[i][j]; finish[i]=1; flag=1;

}

//printf("\nP%d",i);

if(finish[i]==1)

{

i=n;

}

}

}

 CSE Page 66

}

}

}

j=0;

flag=0;

for(i=0;i<n;i++)

{

if(finish[i]==0)

{

dead[j]=i;

j++;

flag=1;

}

}

if(flag==1)

{

}

else

{

}

}

printf("\n\nSystem is in Deadlock and the Deadlock process are\n"); for(i=0;i<n;i++)

{

}

printf("P%d\t",dead[i]);

OUTPUT:

Enter the no. Of processes 3

Enter the no of resources instances 3 Enter

the max matrix

3 6 8

4 3 3

 CSE Page 67

3 4 4

Enter the allocation matrix 3 3 3

2 0 3

1 2 4

Enter the available resources 1 2 0

Process allocation max available

P1 3 3 3 3 6 8 1 2 0

P2 2 0 3 4 3 3

P3 1 2 4 3 4 4

System is in deadlock and deadlock process are P1 P2 P3

RESULT:

Thus the program to implement the deadlock detection was executed

successfully.

VIVA QUESTIONS:

1. Define Deadlock Prevention.

2. List the difference Between Starvation and Deadlock.

3. Give the advantages of Deadlock.

4. List the disadvantages of Deadlock method.

5. Define resource. Give examples.

6. What are the conditions to be satisfied for the deadlock to occur?

7. How can be the resource allocation graph used to identify a deadlock situation?

8. How is Banker’s algorithm useful over resource allocation graph technique?

9. Differentiate between deadlock avoidance and deadlock prevention?

ASSIGNMENT

1. Write a C program to implement deadlock detection technique for the

following scenarios?

a. Single instance of each resource type

b. Multiple instances of each resource type

 CSE Page 68

Ex.NO: 9 IMPLEMENTATION OF MEMORY ALLOCATION

TECHNIQUES

AIM:

To write a C program to implement Memory Management concept using the

technique best fit, worst fit and first fit algorithms.

ALGORITHM:

1. Get the number of process.

2. Get the number of blocks and size of process.

3. Get the choices from the user and call the corresponding switch cases.

4. First fit -allocate the process to the available free block match with the size of the

process

5. Worst fit –allocate the process to the largest block size available in the list

6. Best fit-allocate the process to the optimum size block available in the list

7. Display the result with allocations

PROGRAM:

#include<stdio.h> main()

{

int p[10],np,b[10],nb,ch,c[10],d[10],alloc[10],flag[10],i,j;

printf("\nEnter the no of process:");

scanf("%d",&np);

printf("\nEnter the no of blocks:");

scanf("%d",&nb);

printf("\nEnter the size of each process:");

for(i=0;i<np;i++)

{

printf("\nProcess %d:",i);

scanf("%d",&p[i]);

}

 CSE Page 69

printf("\nEnter the block sizes:");

for(j=0;j<nb;j++)

{

printf("\nBlock %d:",j);

scanf("%d",&b[j]);c[j]=b[j];d[j]=b[j];

}

if(np<=nb)

{

printf("\n1.First fit 2.Best fit 3.Worst fit"); do

{

printf("\nEnter your choice:");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nFirst Fit\n");

for(i=0;i<np;i++)

{

for(j=0;j<nb;j++)

{

if(p[i]<=b[j])

{

alloc[j]=p[i];printf("\n\nAlloc[%d]",all

oc[j]);

printf("\n\nProcess %d of size %d is

allocated in block:%d of size:%d",i,p[i],j,b[j]);

flag[i]=0,b[j]=0;break;

}

else

flag[i]=1;

 CSE Page 70

}

}

for(i=0;i<np;i++)

{

if(flag[i]!=0)

printf("\n\nProcess %d of size %d is not

allocated",i,p[i]);

}

break;

case 2: printf("\nBest Fit\n");

for(i=0;i<nb;i++)

{

for(j=i+1;j<nb;j++)

{

if(c[i]>c[j])

{

int temp=c[i];

c[i]=c[j];

c[j]=temp;

}

}

}

printf("\nAfter sorting block sizes:");

for(i=0;i<nb;i++)

printf("\nBlock %d:%d",i,c[i]);

for(i=0;i<np;i++)

{

for(j=0;j<nb;j++)

{

 CSE Page 71

if(p[i]<=c[j])

{

}

else

}

}

alloc[j]=p[i];printf("\n\nAlloc[%d]",all oc[j]);

printf("\n\nProcess %d of size %d is

allocated in block %d of size

%d",i,p[i],j,c[j]); flag[i]=0,c[j]=0;break;

flag[i]=1;

for(i=0;i<np;i++)

{

}

break;

if(flag[i]!=0)

printf("\n\nProcess %d of size %d is not

allocated",i,p[i]);

case 3: printf("\nWorst Fit\n");

for(i=0;i<nb;i++)

{

for(j=i+1;j<nb;j++)

{

if(d[i]<d[j])

{

int temp=d[i];

d[i]=d[j];

d[j]=temp;

}

 CSE Page 72

}

}

printf("\nAfter sorting block sizes:"); for(i=0;i<nb;i++)

printf("\nBlock %d:%d",i,d[i]);

for(i=0;i<np;i++)

{

for(j=0;j<nb;j++)

{

if(p[i]<=d[j])

{

alloc[j]=p[i];

printf("\n\nAlloc[%d]",alloc[j]);

printf("\n\nProcess %d of size %d is

allocated in block %d of size

%d",i,p[i],j,d[j]

flag[i]=0,d[j]=0;break;

}

else

flag[i]=1;

}

}

for(i=0;i<np;i++)

{

}

break;

if(flag[i]!=0)

printf("\n\nProcess %d of size

%d is not allocated",i,p[i]);

default: printf(“Invalid Choice…!”);break;

 CSE Page 73

}

}while(ch<=3);

}

}

OUTPUT

Enter the no of process:3 Enter

the no of blocks:3

Enter the size of each process:

Process 0:100

Process 1:150

Process 2:200

Enter the block sizes:

Block 0:300

Block 1:350

Block 2:200

1.First fit 2.Best fit 3.Worst fit Enter

your choice:1

Alloc[100]

Process 0 of size 100 is allocated in block 0 of size 300 Alloc[150]

Process 1 of size 150 is allocated in block 1 of size 350 Alloc[200]

Process 2 of size 200 is allocated in block 2 of size 200 Enter your

choice:2

Best Fit

After sorting block sizes are: Block

0:200

Block 1:300

Block 2:350

 CSE Page 74

Alloc[100]

Process 0 of size 100 is allocated in block:0 of size:200 Alloc[150]

Process 1 of size 150 is allocated in block:1 of size:300 Alloc[200]

Process 2 of size 200 is allocated in block:2 of size:350 enter your

choice:3

Worst Fit

After sorting block sizes are:

Block 0:350

Block 1:300

Block 2:200

Alloc[100]

Process 0 of size 100 is allocated in block 0 of size 350 Alloc[150]

Process 1 of size 150 is allocated in block 1 of size 300 Alloc[200]

Process 2 of size 200 is allocated in block 2 of size 200 Enter your

choice:6

Invalid Choice…!

RESULT:

Thus a UNIX C program to implement memory management scheme using Best fit worst fit

and first fit were executed successfully.

VIVA QUESTIONS

1. What is Memory Management?

2. Why Use Memory Management?

3. List the memory allocation techniques

4. Define Best fit and its advantage?

5. What is the use of First fit and worst fir methods?

ASSIGNMENT :

 CSE Page 75

1. Write a C program to implement compaction technique.

EX.NO:10 IMPLEMENTATION OF PAGING TECHNIQUE OF MEMORY

MANAGEMENT

AIM:

To write a C program to implement paging concept for memory management.

ALGORIHTM:

Step 1: Start the program.

Step 2: Enter the logical memory address.

Step 3: Enter the page table which has offset and page frame. Step 4: The corresponding

physical address can be calculate by, PA = [pageframe* No. of page size] + Page offset.

Step 5: Print the physical address for the corresponding logical address. Step 6: Terminate the

program.

PROGRAM:

#include<stdio.h>

#include<conio.h> main()

{

int ms, ps, nop, np, rempages, i, j, x, y, pa, offset;

int s[10], fno[10][20];

clrscr();

printf("\nEnter the memory size -- ");

scanf("%d",&ms);

printf("\nEnter the page size -- ");

scanf("%d",&ps);

nop = ms/ps;

printf("\nThe no. of pages available in memory are -- %d ",nop); printf("\nEnter

number of processes -- ");

scanf("%d",&np);

rempages = nop;

for(i=1;i<=np;i++)

 CSE Page 76

{

printf("\nEnter no. of pages required for p[%d]-- ",i);

scanf("%d",&s[i]);

if(s[i] >rempages)

{

printf("\nMemory is Full"); break;

}

rempages = rempages - s[i]; printf("\nEnter

pagetable for p[%d] --- ",i); for(j=0;j<s[i];j++)

scanf("%d",&fno[i][j]);

}

printf("\nEnter Logical Address to find Physical Address ");

printf("\nEnter process no. and pagenumber and offset -- ");

scanf("%d %d %d",&x,&y, &offset);

if(x>np || y>=s[i] || offset>=ps)

printf("\nInvalid Process or Page Number or offset");

else

{

}

pa=fno[x][y]*ps+offset;

printf("\nThe Physical Address is -- %d",pa);

getch();

}

OUTPUT

Enter the memory size – 1000 Enter

the page size -- 100

The no. of pages available in memory are 10

 CSE Page 77

Enter number of processes -- 3

Enter no. of pages required for p[1]-- 4

Enter pagetable for p[1] --- 8 6 9 5

Enter no. of pages required for p[2]-- 5

Enter pagetable for p[2] --- 1 4 5 7 3

Enter no. of pages required for p[3]--

Memory is Full

5

Enter Logical Address to find Physical Address Enter process no. and pagenumber and offset --

2

3

60

The Physical Address is -- 760

RESULT:

Thus C program for implementing paging concept for memory management has been executed

successfully.

VIVA QUESTIONS

1. What is the use Memory Management?

2. Define Memory Management Techniques

3. What is Swapping?

4. What is paging?

5. What are the advantages of non-contiguous memory allocation schemes?

6. What is the process of mapping a logical address to physical address with respect to

the paging memory management technique?

7. Define the terms – base address, offset?

8. Differentiate between paging and segmentation memory allocation techniques?

9. What is the purpose of page table?

10. Whether the paging memory management technique suffers with internal or

external fragmentation problem. Why?

ASSIGNMENT

1. Write a C program to simulate two-level paging technique.

2. Write a C program to simulate segmentation memory management

technique.

 CSE Page 78

EX.NO:11A IMPLEMENTATION OF THE FIFO PAGE REPLACEMENT

ALGORITHMS

AIM:

To write a UNIX C program to implement FIFO page replacement algorithm.

DESCRIPTION :

The FIFO Page Replacement algorithm associates with each page the time when that page was

brought into memory. When a page must be replaced, the oldest page is chosen . There is not

strictly necessary to record the time when a page is brought in. By creating a FIFO queue to

hold all pages in memory and by replacing the page at the head of the queue. When a page is

brought into memory, insert it at the tail of the queue.

ALGORITHM:

1. Start the process

2. Declare the size with respect to page length

3. Check the need of replacement from the page to memory

4. Check the need of replacement from old page to new page in memory

5. Format queue to hold all pages

6. Insert the page require memory into the queue

7. Check for bad replacement and page fault

8. Get the number of processes to be inserted

9. Display the values

10. Stop the process

PROGRAM:

#include<stdio.h>

#include<conio.h>

main()

{

int i, j, k, f, pf=0, count=0, rs[25], m[10], n;

clrscr();

printf("\n Enter the length of reference string -- ");

 CSE Page 79

scanf("%d",&n);

printf("\n Enter the reference string -- ");

for(i=0;i<n;i++)

scanf("%d",&rs[i]); printf("\n

Enter no. of frames -- ");

scanf("%d",&f);

for(i=0;i<f;i++)

m[i]=-1;

printf("\n The Page Replacement Process is -- \n");

for(i=0;i<n;i++)

{

for(k=0;k<f;k++)

{

if(m[k]==rs[i])

break;

}

if(k==f)

{

m[count++]=rs[i];

pf++;

}

for(j=0;j<f;j++)

printf("\t%d",m[j]);

if(k==f)

printf("\tPF No. %d",pf);

printf("\n");

if(count==f)

count=0;

}

printf("\n The number of Page Faults using FIFO are %d",pf); getch();

}

 CSE Page 80

OUTPUT

Enter the length of reference string – 20

Enter the reference string -- 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Enter no. of frames -- 3

The Page Replacement Process is –

7 -1 -1 PF No. 1

7 0 -1 PF No. 2

7 0 1 PF No. 3

2 0 1 PF No. 4

2 0 1

2 3 1 PF No. 5

2 3 0 PF No. 6

4 3 0 PF No. 7

4 2 0 PF No. 8

4 2 3 PF No. 9

0 2 3 PF No. 10

0 2 3

0 2 3

0 1 3 PF No. 11

0 1 2 PF No. 12

0 1 2

0 1 2

7 1 2 PF No. 13

7 0 2 PF No. 14

7 0 1 PF No. 15

The number of Page Faults using FIFO are 15

RESULT:

Thus a UNIX C program to implement FIFO page replacement is executed successfully.

 CSE Page 81

EX.NO:11B IMPLEMENTATION OF LRU PAGE REPLACEMENT

ALGORITHM

AIM:

To write UNIX C program a program to implement LRU page replacement

algorithm.

DESCRIPTION:

The Least Recently Used replacement policy chooses to replace the page which has not been

referenced for the longest time. This policy assumes the recent past will approximate the

immediate future. The operating system keeps track of when each page was referenced by

recording the time of reference or by maintaining a stack of references.

ALGORITHM:

1. Start the process

2. Declare the size

3. Get the number of pages to be inserted

4. Get the value

5. Declare counter and stack

6. Select the least recently used page by counter value

7. Stack them according the selection.

8. Display the values

9. Stop the process

PROGRAM:

#include<stdio.h>

#include<conio.h>

main()

{

int i, j , k, min, rs[25], m[10], count[10], flag[25], n, f, pf=0, next=1;

clrscr();

printf("Enter the length of reference string -- ");

 CSE Page 82

scanf("%d",&n);

printf("Enter the reference string -- ");

for(i=0;i<n;i++)

{

scanf("%d",&rs[i]); flag[i]=0;

}

printf("Enter the number of frames -- ");

scanf("%d",&f);

for(i=0;i<f;i++)

{

count[i]=0;

m[i]=-1;

}

printf("\nThe Page Replacement process is -- \n");

for(i=0;i<n;i++)

{

for(j=0;j<f;j++)

{

if(m[j]==rs[i])

{

flag[i]=1;

count[j]=next;

next++;

}

}

if(flag[i]==0)

{

if(i<f)

{

m[i]=rs[i];

count[i]=next; next++;

 CSE Page 83

}

else

{

}

pf++;

}

min=0;

for(j=1;j<f;j++)

if(count[min] > count[j])

min=j;

m[min]=rs[i];

count[min]=next; next++;

for(j=0;j<f;j++)

printf("%d\t", m[j]);

if(flag[i]==0)

printf("PF No. -- %d" , pf);

printf("\n");

}

printf("\nThe number of page faults using LRU are %d",pf);

getch();

}

OUTPUT

Enter the length of reference string -- 20

Enter the reference string -- 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 Enter the

number of frames -- 3

The Page Replacement process is --

7 -1 -1 PF No. -- 1

7 0 -1 PF No. -- 2

7 0 1 PF No. -- 3

2 0 1 PF No. -- 4

 CSE Page 84

2 0 1

2 0 3 PF No. -- 5

2 0 3

4 0 3 PF No. -- 6

4 0 2 PF No. -- 7

4 3 2 PF No. -- 8

0 3 2 PF No. -- 9

0 3 2

0 3 2

1 3 2 PF No. -- 10

1 3 2

1 0 2 PF No. -- 11

1 0 2

1 0 7 PF No. -- 12

1 0 7

1

0

7

The number of page faults using LRU are 12

RESULT:

Thus a UNIX C program to implement LRU page replacement is executed successfully.

 CSE Page 85

EX.NO:11C IMPLEMENTATION OF LFU PAGE REPLACEMENT

ALGORITHM

AIM:

To write a program in C to implement LFU page replacement algorithm.

ALGORITHM

Step1: Start the program

Step2: Declare the required variables and initialize it. Step3; Get the

frame size and reference string from the user Step4: Keep track of

entered data elements

Step5: Accommodate a new element look for the element that is not to be used in frequently

replace.

Step6: Count the number of page fault and display the value

Step7: Terminate the program

PROGRAM

#include<stdio.h>

#include<conio.h> main()

{

int rs[50], i, j, k, m, f, cntr[20], a[20], min, pf=0;

clrscr();

printf("\nEnter number of page references -- ");

scanf("%d",&m);

printf("\nEnter the reference string -- ");

for(i=0;i<m;i++)

scanf("%d",&rs[i]);

printf("\nEnter the available no. of frames -- ");

scanf("%d",&f);

for(i=0;i<f;i++)

{

 CSE Page 86

cntr[i]=0;

a[i]=-1;

}

Printf(“\nThe Page Replacement Process is – \n“);

for(i=0;i<m;i++)

{

for(j=0;j<f;j++)

if(rs[i]==a[j])

{

}

if(j==f)

{

cntr[j]++;

break;

min = 0;

for(k=1;k<f;k++)

if(cntr[k]<cntr[min])

min=k;

a[min]=rs[i];

cntr[min]=1;

pf++;

}

printf("\n");

for(j=0;j<f;j++)

printf("\t%d",a[j]);

if(j==f)

printf(“\tPF No. %d”,pf);

}

printf("\n\n Total number of page faults -- %d",pf); getch();

}

 CSE Page 87

OUTPUT

Enter number of page references -- 10

Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3

Enter the available no. of frames 3

The Page Replacement Process is –

1 -1 -1 PF No. 1

1 2 -1 PF No. 2

1 2 3 PF No. 3

4 2 3 PF No. 4

5 2 3 PF No. 5

5 2 3

5 2 3

5 2 1 PF No. 6

5 2 4 PF No. 7

5 2 3 PF No. 8

Total number of page faults ------------------ 8

RESULT:

Thus the C programs to implement LFU page replacement algorithm was executed

successfully.

VIVA QUESTIONS:

1. What is the purpose of page replacement?

2. Define page fault?

3. Which replacement algorithms suffers from Belady’s anomaly?

4. Reference bit is used in which page replacement algorithm?

5. What is LRU page replacement?

6. Define optimal page replacement.

7. Define the concept of thrashing? What is the scenario that leads to the situation of

thrashing?

ASSIGNMENT:

 CSE Page 88

1.Write a C program to simulate LRU-approximation page replacement algorithm?

 CSE Page 89

a. Additional-Reference bits algorithm

b. Second-chance algorithm

EX.NO:12A SEQUENTIAL FILE

ALLOCATION AIM:

To implement sequential file allocation technique.

ALGORITHM:

Step 1: Start the program. Step 2: Get

the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations to each in sequential order.

a). Randomly select a location from available location s1= random(100); b). Check whether the

required locations are free from the selected location. c). Allocate and set flag=1 to the

allocated locations.

Step 5: Print the results fileno, length , Blocks allocated. Step 6: Stop the progr

PROGRAM

#include<stdio.h> main()

{

int f[50],i,st,j,len,c,k;

clrscr();

for(i=0;i<50;i++)

f[i]=0;

X:

printf("\n Enter the starting block & length of file"); scanf("%d%d",&st,&len);

for(j=st;j<(st+len);j++)

if(f[j]==0)

{

f[j]=1;

printf("\n%d->%d",j,f[j]);

}

else

 CSE Page 90

{

printf("Block already allocated");

break;

}

if(j==(st+len))

printf("\n the file is allocated to disk"); printf("\n if

u want to enter more files?(y-1/n-0)"); scanf("%d",&c);

if(c==1)

goto X;

else

getch();

}

OUTPUT

exit();

Output: Enter the starting block & length of file 4 10 4->1

5->1

6->1

7->1

8->1

9->1

10->1

11->1

12->1

13->1

The file is allocated to disk

If you want to enter more files? (Y-1/N-0)

RESULT :

Thus the program to implement the Sequential file allocation was executed

successfully.

 CSE Page 91

EX.NO:12B LINKED FILE

ALLOCATION AIM:

To write a C program to implement File Allocation concept using the technique Linked

List Technique.

ALGORITHM:

Step 1: Start the Program

Step 2: Get the number of files.

Step 3: Allocate the required locations by selecting a location randomly Step 4:

Check whether the selected location is free.

Step 5: If the location is free allocate and set flag =1 to the allocated locations. Step 6:

Print the results file no, length, blocks allocated.

Step 7: Stop the execution

PROGRAM:

#include<stdio.h>

main()

{

int f[50],p,i,j,k,a,st,len,n,c;

clrscr();

for(i=0;i<50;i++)

f[i]=0;

printf("Enter how many blocks that are already allocated");

scanf("%d",&p);

printf("\nEnter the blocks no.s that are already allocated");

for(i=0;i<p;i++)

{

scanf("%d",&a);

f[a]=1;

}

X: printf("Enter the starting index block & length"); scanf("%d%d",&st,&len);

 CSE Page 92

k=len;

for(j=st;j<(k+st);j++)

{

if(f[j]==0)

{

}

else

{

}

}

f[j]=1;

printf("\n%d->%d",j,f[j]);

printf("\n %d->file is already allocated",j); k++;

printf("\n If u want to enter one more file? (yes-1/no-0)");

scanf("%d",&c);

if(c==1)

goto X;

else

getch();

}

OUTPUT:

exit();

Enter how many blocks are already allocated 3 Enter the

blocks no’s that are already allocated 4 7 9 Enter the starting

index block & length 3 7

3-> 1

4-> File is already allocated 5->1

6->1

7-> File is already allocated 8->1

9-> File is already allocated 10->1

11->1

12->1

If u want to enter one more file? (yes-1/no-0)

RESULT:

 CSE Page 93

Thus the program to implement the linked file allocation was executed successfully

EX.NO:12C INDEXED FILE

ALLOCATION AIM:

To write a C program to implement file Allocation concept using the technique indexed

allocation Technique

ALGORITHM:

Step 1: Start the Program

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly. Step 5: Print the

results file no,length, blocks allocated.

Step 6: Stop the execution.

PROGRAM

#include<stdio.h>

int f[50],i,k,j,inde[50],n,c,count=0,p;

main()

{

clrscr();

for(i=0;i<50;i++)

f[i]=0;

x: printf("enter index block\t");

scanf("%d",&p);

if(f[p]==0)

{

}

else

{

f[p]=1;

printf("enter no of files on index\t"); s canf("%d",&n);

printf("Block already allocated\n"); goto x;

 CSE Page 94

}

for(i=0;i<n;i++)

scanf("%d",&inde[i]);

for(i=0;i<n;i++)

if(f[inde[i]]==1)

{

printf("Block already allocated"); goto

x;

}

for(j=0;j<n;j++)

f[inde[j]]=1; printf("\n

allocated"); printf("\n file

indexed"); for(k=0;k<n;k++)

printf("\n %d->%d:%d",p,inde[k],f[inde[k]]);

printf(" Enter 1 to enter more files and 0 to exit\t"); s

scanf("%d",&c);

if(c==1)

goto x;

else

getch();

}

OUTPUT:

exit();

Enter index block 9

Enter no of files on index 3 1 2 3

Allocated

File indexed 9-> 1:1

9-> 2:1

9->3:1

Enter 1 to enter more files and 0 to exit.

RESULT :

 CSE Page 95

Thus the program to implement the indexed file allocation was executed successfully

VIVA QUESTIONS:

1. Define file?

2. What are the different kinds of files?

3. What is the purpose of file allocation strategies?

4. Identify ideal scenarios where sequential, indexed and linked file allocation

strategies are most appropriate?

5. What are the disadvantages of sequential file allocation strategy?

6. What is an index block?

7. What is the file allocation strategy used in UNIX?

ASSIGNMENT:

1. Write a C program to simulate a two-level index scheme for file allocation?

 CSE Page 96

EX.NO: 13 MULTI-LEVEL QUEUE

SCHEDULING AIM:

Write a C program to simulate multi-level queue scheduling algorithm considering the

following scenario. All the processes in the system are divided into two categories

– system processes and user processes. System processes are to be given higher priority

than user processes. The priority of each process ranges from 1 to 3. Use fixed priority

scheduling for all the processes.

DESCRIPTION:

Multi-level queue scheduling algorithm is used in scenarios where the processes can be

classified into groups based on property like process type, CPU time, IO access, memory size,

etc. In a multi-level queue scheduling algorithm, there will be 'n' number of queues, where 'n' is

the number of groups the processes are classified into. Each queue will be assigned a priority

and will have its own scheduling algorithm like round-robin scheduling or FCFS. For the

process in a queue to execute, all the queues of priority higher than it should be empty,

meaning the process in those high priority queues should have completed its execution. In this

scheduling algorithm, once assigned to a queue, the process will not move to any other

queues.

PROGRAM:

main()

{

int p[20],bt[20], su[20], wt[20],tat[20],i, k, n, temp; float

wtavg, tatavg;

clrscr();

printf("Enter the number of processes --- ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

p[i] = i;

printf("Enter the Burst Time of Process %d --- ", i);

scanf("%d",&bt[i]);

printf("System/User Process (0/1) ? --- ");

scanf("%d", &su[i]);

 CSE Page 97

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(su[i] > su[k])

{

}

wtavg = wt[0] = 0;

temp=p[i]; p[i]=p[k]; p[k]=temp;

temp=bt[i]; bt[i]=bt[k]; bt[k]=temp;

temp=su[i]; su[i]=su[k]; su[k]=temp;

tatavg = tat[0] = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] + bt[i-1];

tat[i] = tat[i-1] + bt[i];

wtavg = wtavg + wt[i]; tatavg = tatavg + tat[i];

}

printf("\nPROCESS\t\t SYSTEM/USER PROCESS \tBURST

TIME\tWAITING TIME\tTURNAROUND TIME");

for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],su[i],bt[i],wt[i],tat[i]);

printf("\nAverage Waiting Time is --- %f",wtavg/n);

printf("\nAverage Turnaround Time is --- %f",tatavg/n);

getch();

}

OUTPUT

Enter the number of processes --- 4 Enter the

Burst Time of Process 0 --- 3

 CSE Page 98

System/User Process (0/1) ? --- 1

Enter the Burst Time of Process 1 --- 2 System/User

Process (0/1) ? --- 0

Enter the Burst Time of Process 2 --- 5 System/User Process

(0/1) ? --- 1

Enter the Burst Time of Process 3 --- 1 System/User

Process (0/1) ? --- 0

PROCE

SS

USER

PROCESS

BURST

TIME

WAITING

TIME

TURNAROUND

TIME

1 0 2 0 2

3 0 1 2 3

2 1 5 3 8

0 1 3 8 11

Average Waiting Time is --- 3.250000 Average

Turnaround Time is --- 6.000000 RESULT:

The Multilevel Scheduling algorithm has been implemented in C.

VIVA QUESTIONS

1. What is multi-level queue CPU Scheduling?

2. Differentiate between the general CPU scheduling algorithms like FCFS, SJF etc

and multi-level queue CPU Scheduling?

3. What are CPU-bound I/O-bound processes?

4. What are the parameters to be considered for designing a multilevel feedback

queue scheduler?

5. Differentiate multi-level queue and multi-level feedback queue CPU scheduling

algorithms?

6. What are the advantages of multi-level queue and multi-level feedback queue CPU

scheduling algorithms?

ASSIGNMENT:

1. Write a C program to simulate multi-level queue scheduling algorithm considering the

following scenario. All the processes in the system are divided into two categories

– system processes and user processes. System processes are to be given higher

 CSE Page 99

priority than user processes. Consider each process priority to be from 1 to 3. Use priority

scheduling for the processes in each queue

EX.NO: 14 DISK SCHEDULING

ALGORITHMS AIM:

Write a C program to simulate disk scheduling algorithms

a) FCFS b) SCAN c) C-SCAN

DESCRIPTION

One of the responsibilities of the operating system is to use the hardware efficiently. For the

disk drives, meeting this responsibility entails having fast access time and large disk

bandwidth. Both the access time and the bandwidth can be improved by managing the order in

which disk I/O requests are serviced which is called as disk scheduling. The simplest form of

disk scheduling is, of course, the first-come, first- served (FCFS) algorithm. This algorithm is

intrinsically fair, but it generally does not provide the fastest service. In the SCAN algorithm,

the disk arm starts at one end, and moves towards the other end, servicing requests as it reaches

each cylinder, until it gets to the other end of the disk. At the other end, the direction of head

movement is reversed, and servicing continues. The head continuously scans back and forth

across the disk. C-SCAN is a variant of SCAN designed to provide a more uniform wait time.

Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing

requests along the way. When the head reaches the other end, however, it immediately returns

to the beginning of the disk without servicing any requests on the return trip

PROGRAM

FCFS DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], n, I, j, tohm[20], tot=0;

float avhm;

clrscr();

printf(“enter the no.of tracks”);

scanf(“%d”,&n);

printf(“enter the tracks to be traversed”);

for(i=2;i<n+2;i++)

 CSE Page 100

scanf(“%d”,&t*i+);

for(i=1;i<n+1;i++)

{

tohm[i]=t[i+1]-t[i];

if(tohm[i]<0)

tohm[i]=tohm[i]*(-1);

}

for(i=1;i<n+1;i++)

tot+=tohm[i];

avhm=(float)tot/n;

printf(“Tracks traversed\tDifference between tracks\n”); for(i=1;i<n+1;i++)

printf(“%d\t\t\t%d\n”,t*i+,tohm*i+);

printf("\nAverage header movements:%f",avhm); getch();

}

OUTPUT

Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184

Tracks traversed Difference between tracks

55 45

58 3

60 2

70 10

18 52

90 72

150 60

160 10

184 24

Average header movements:30.888889

 CSE Page 101

SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

t[0]=0;t[1]=h;

printf("enter the tracks");

for(i=2;i<n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<n+2;i++)

{

for(j=0;j<(n+2)-i-1;j++)

{

if(t[j]>t[j+1])

{

temp=t[j];

t[j]=t[j+1];

t[j+1]=temp;

}

}

}

for(i=0;i<n+2;i++)

if(t[i]==h)

 CSE Page 102

j=i;k=i;

p=0;

while(t[j]!=0)

{

atr[p]=t[j];

j--;

p++;

}

atr[p]=t[j];

for(p=k+1;p<n+2;p++,k++)

atr[p]=t[k+1];

for(j=0;j<n+1;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("\nAverage header movements:%f",(float)sum/n);

getch();

}

OUTPUT

Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184 Tracks

traversed Difference between tracks

150 50

160 10

1841 24

90 94

 CSE Page 103

70 20

60 10

58 2

55 3

18 37

Average header movements: 27.77

C-SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h> main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

t[0]=0;t[1]=h;

printf("enter total tracks");

scanf("%d",&tot);

t[2]=tot-1;

printf("enter the tracks");

for(i=3;i<=n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<=n+2;i++)

for(j=0;j<=(n+2)-i-1;j++)

if(t[j]>t[j+1])

{

temp=t[j];

t[j]=t[j+1];

 CSE Page 104

}

for(i=0;i<=n+2;i++)

if(t[i]==h)

t[j+1]=temp;

j=i;break;

p=0;

while(t[j]!=tot-1)

{

atr[p]=t[j];

j++;

p++;

}

atr[p]=t[j];

p++;

i=0;

while(p!=(n+3) && t[i]!=t[h])

{

atr[p]=t[i];

i++;

p++;

}

for(j=0;j<n+2;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("total header movements%d",sum);

 CSE Page 105

printf("avg is %f",(float)sum/n);

getch();

}

OUTPUT

Enter the track position: 55 58 60 70 18 90 150 160 184

Enter starting position : 100

Tracks traversed Difference Between tracks

150 50

160 10

184 24

18 240

55 37

58 3

60 2

70 10

90 29

Average seek time : 35.7777779

RESULT:

Thus the program to implement disk Scheduling algorithm has been executed and

verified

VIVA QUESTIONS:

1. What is disk scheduling?

2. List the different disk scheduling algorithms?

3. Define the terms – disk seek time, disk access time and rotational latency?

4. Define sequential file allocation?

5. What is the use of indexed file allocation?

6. What is the advantages if linked allocation?

7. What is the advantage of C-SCAN algorithm over SCAN algorithm?

8. Which disk scheduling algorithm has highest rotational latency? Why?

 CSE Page 106

ASSIGNMENT:

1. Write a C program to implement SSTF disk scheduling algorithm?

EX.NO.15 DINING-PHILOSOPHERS

PROBLEM. AIM:

Write a C program to simulate the concept of Dining-Philosophers problem.

DESCRIPTION

The dining-philosophers problem is considered a classic synchronization problem because it is an

example of a large class of concurrency-control problems. It is a simple representation of the

need to allocate several resources among several processes in a deadlock-free and starvation-free

manner. Consider five philosophers who spend their lives thinking and eating. The philosophers

share a circular table surrounded by five chairs, each belonging to one philosopher. In the

center of the table is a bowl of rice, and the table is laid with five single chopsticks. When a

philosopher thinks, she does not interact with her colleagues. From time to time, a philosopher

gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that are

between her and her left and right neighbors). A philosopher may pick up only one chopstick at a

time. Obviously, she cam1ot pick up a chopstick that is already in the hand of a neighbor. When a

hungry philosopher has both her chopsticks at the same time, she eats without releasing her

chopsticks. When she is finished eating, she puts down both of her chopsticks and starts thinking

again. The dining-philosophers problem may lead to a deadlock situation and hence some rules

have to be framed to avoid the occurrence of deadlock.

PROGRAM

int tph, philname[20], status[20], howhung, hu[20], cho; main()

{

int i;

clrscr();

printf("\n\nDINING PHILOSOPHER PROBLEM");

printf("\nEnter the total no. of philosophers: ");

scanf("%d",&tph);

for(i=0;i<tph;i++)

{

philname[i] = (i+1);

 CSE Page 107

status[i]=1;

}

printf("How many are hungry : ");

scanf("%d", &howhung);

if(howhung==tph)

{

}

else

{

printf("\nAll are hungry..\nDead lock stage will occur"); printf("\nExiting..");

for(i=0;i<howhung;i++)

{

printf("Enter philosopher %d position: ",(i+1)); scanf("%d",

&hu[i]);

status[hu[i]]=2;

}

do

{

printf("1.One can eat at a time\t2.Two can eat at a time\t3.Exit\nEnter

your choice:");

scanf("%d", &cho);

switch(cho)

{

case 1: one();

break;

case 2: two();

break;

case 3: exit(0);

default: printf("\nInvalid option..");

 CSE Page 108

}

}

one()

{

}

}while(1);

int pos=0, x, i;

printf("\nAllow one philosopher to eat at any time\n");

for(i=0;i<howhung; i++, pos++)

{

}

}

two()

{

printf("\nP %d is granted to eat", philname[hu[pos]]); for(x=pos;x<howhung;x++)

printf("\nP %d is waiting", philname[hu[x]]);

int i, j, s=0, t, r, x;

printf("\n Allow two philosophers to eat at same time\n"); for(i=0;i<howhung;i++)

{

for(j=i+1;j<howhung;j++)

{

if(abs(hu[i]-hu[j])>=1&& abs(hu[i]-hu[j])!=4)

{

printf("\n\ncombination %d \n", (s+1));

t=hu[i];

r=hu[j];

s++;

printf("\nP %d and P %d are granted to eat",

philname[hu[i]],philname[hu[j]]);

 CSE Page 109

for(x=0;x<howhung;x++)

{

if((hu[x]!=t)&&(hu[x]!=r))

printf("\nP %d is waiting", philname[hu[x]]);

}

}

}

}

}

OUTPUT

DINING PHILOSOPHER PROBLEM

Enter the total no. of philosophers: 5 How

many are hungry : 3

Enter philosopher 1 position: 2

Enter philosopher 2 position: 4

Enter philosopher 3 position: 5

1. One can eat at a time 2.Two can eat at a time 3.Exit

Enter your choice: 1

Allow one philosopher to eat at any time P 3 is granted to eat P 3 is

waiting P 5 is waiting P 0 is waiting

P 5 is granted to eat P 5 is waiting P 0 is

waiting

P 0 is granted to eat P 0 is waiting

1.One can eat at a time 2.Two can eat at a time 3.Exit Enter your choice: 2

Allow two philosophers to eat at same time combination 1

P 3 and P 5 are granted to eat P 0 is waiting combination 2

P 3 and P 0 are granted to eat P 5 is waiting combination 3

P 5 and P 0 are granted to eat P 3 is waiting

 CSE Page
110

1.One can eat at a time 2.Two can eat at a time 3.Exit Enter your choice: 3

RESULT:

Thus the program to implement the dining Philosopher was executed

and verified.

VIVA QUESTIONS:

1. Differentiate between a monitor, semaphore and a binary semaphore?

2. Define clearly the dining-philosophers problem?

3. Identify the scenarios in the dining-philosophers problem that leads

to the deadlock situations?

ASSIGNMENT:

1. Write a C program to simulate readers-writers problem using monitors?

	2020-21
	Mr. B. RAMA SUBBAIAH
	Asso. Professor For
	1. Institute Vision & Mission, Department Vision & Mission Institute Vision:
	Institute Mission:
	Department Vision:
	Department Mission:
	2. PO, PEO& PSO Statements PROGRAMME OUTCOMES (POs)
	Program Educational Objectives (PEOs):
	Program Specific Outcomes (PSOs):
	OPERATING SYSTEMS LABORATORY
	(19A05403P)
	OBJECTIVES
	LIST OF EXPERIMENTS
	* Content beyond the university prescribed syllabi
	AIM:
	PROCEDURE:
	GENERAL COMMANDS
	FILE COMMANDS
	GENERAL COMMANDS (1)
	[student@veccse ~]date +%D
	[student@veccse ~]date +%T
	[student@veccse ~]date +%Y
	[student@veccse ~]date +%H
	[student@veccse ~]cal
	[student@veccse ~]cal 2020
	[student@veccse ~]who
	[student@veccse ~]who am i
	[student@veccse ~]tty
	[student@veccse ~]uname
	[student@veccse ~]echo "hello"
	[student@veccse ~]echo $HOME
	[student@veccse ~]man lp
	[student@veccse ~]history
	DIRECTORY COMMANDS
	[student@veccse ~]mkdir san [student@veccse ~]mkdir s1 s2 [student@veccse ~]ls
	[student@veccse /]$ rmdir s1 [student@veccse ~]$ ls
	FILE COMMANDS (1)
	[student@vecit ~]$ cat test
	[student@vecit ~]$ cat>test1 [student@vecit ~]$ cp test test1 [student@vecit ~]$ cat test1
	[student@vecit ~]$ ls
	[student@vecit ~]$ ls (1)
	RESULT
	VIVA QUESTIONS
	EX.NO.2A: IMPLEMENTATION OF FORK, EXEC, GETPID, EXIT, WAIT,
	AIM: (1)
	ALGORITHM:
	OUTPUT:
	RESULT:
	EX.NO.2B: IMPLEMENTATION OF OPENDIR AND READDIR SYSTEM
	AIM: (2)
	ALGORITHM: (1)
	OUTPUT: (1)
	RESULT: (1)
	VIVA QUESTIONS:
	EX. NO: 3A: SIMPLE SHELL PROGRAMS
	DESCRIPTION:
	Preliminaries
	Swapping values of two variables Algorithm
	Program (swap.sh) # Swapping values
	Output
	Farenheit to Centigrade Conversion Algorithm
	Program
	Output (1)
	RESULT (1)
	EX.NO.3B: CONDITIONAL CONSTRUCTS AIM:
	DESCRIPTION: (1)
	Operator Description
	# Odd or even using if-else
	String comparison Algorithm
	Program (1)
	RESULT (2)
	EX.NO. 3C: MULTI-WAY BRANCHING AIM:
	DESCRIPTION: (2)
	Simple Calculator Algorithm
	Program (2)
	Output (2)
	RESULT (3)
	EX .NO.3D: LOOPING
	DESCRIPTION: (3)
	Armstrong Number Algorithm
	OUTPUT: (2)
	VIVA QUESTIONS (1)
	EX.NO.4A: IMPLEMENTATION OF FCFS SCHEDULING ALGORITHM AIM
	DESRIPTION:
	.ALGORITHM:
	PROGRAM
	EX.NO.4B : IMPLEMENTATION OF SJF SCHEDULING ALGORITHM AIM
	DESCRIPTION: (4)
	ALGORITHM: (2)
	PROGRAM:
	OUTPUT: (3)
	RESULT: (2)
	EX.NO.4C: IMPLEMENTATION OF ROUND ROBINSCHEDULING
	AIM: (3)
	DESCRIPTION: (5)
	ALGORITHM: (3)
	PROGRAM: (1)
	OUTPUT: (4)
	RESULT (4)
	EX.NO.4D: IMPLEMENTATION OF PRIORITY SCHEDULING ALGORITHM AIM
	DESCRIPTION: (6)
	ALGORITHM: (4)
	PROGRAM: (2)
	OUTPUT: (5)
	VIVA QUESTIONS: (1)
	ASSIGNMENT QUESTIONS
	EX.NO:5 PRODUCER CONSUMER PROBLEM USING SEMAPHORE AIM:
	DESCRIPTION: (7)
	ALGORITHM: (5)
	PROGRAM :
	OUTPUT: (6)
	RESULT: (3)
	VIVA QUESTIONS (2)
	ASSIGNMENT QUESTION:
	EX.NO:6 IMPLEMENTATION OF SHARED MEMORY AND IPC AIM:
	ALGORITHM: (6)
	SHARED MEMORY FOR WRITER PROCESS
	SHARED MEMORY FOR READER PROCESS
	RESULT: (4)
	VIVA QUESTIONS (3)
	EX.NO: 7 DEADLOCK AVOIDANCE AIM:
	DESCRIPTION: (8)
	ALGORITHM: (7)
	OUTPUT
	VIVA QUESTIONS: (2)
	EX.NO:8 DEADLOCK DETECTION ALGORITHM AIM:
	ALGORITHM: (8)
	PROGRAM (1)
	OUTPUT: (7)
	RESULT: (5)
	VIVA QUESTIONS: (3)
	ASSIGNMENT
	Ex.NO: 9 IMPLEMENTATION OF MEMORY ALLOCATION
	AIM: (4)
	ALGORITHM: (9)
	PROGRAM: (3)
	OUTPUT (1)
	RESULT: (6)
	VIVA QUESTIONS (4)
	ASSIGNMENT :
	EX.NO:10 IMPLEMENTATION OF PAGING TECHNIQUE OF MEMORY
	ALGORIHTM:
	PROGRAM: (4)
	OUTPUT (2)
	RESULT: (7)
	VIVA QUESTIONS (5)
	ASSIGNMENT (1)
	EX.NO:11A IMPLEMENTATION OF THE FIFO PAGE REPLACEMENT
	AIM: (5)
	DESCRIPTION :
	ALGORITHM: (10)
	OUTPUT (3)
	RESULT: (8)
	EX.NO:11B IMPLEMENTATION OF LRU PAGE REPLACEMENT
	AIM: (6)
	DESCRIPTION: (9)
	ALGORITHM: (11)
	OUTPUT (4)
	RESULT: (9)
	EX.NO:11C IMPLEMENTATION OF LFU PAGE REPLACEMENT
	ALGORITHM
	PROGRAM (2)
	OUTPUT (5)
	RESULT: (10)
	VIVA QUESTIONS: (4)
	ASSIGNMENT:
	EX.NO:12A SEQUENTIAL FILE ALLOCATION AIM:
	ALGORITHM: (12)
	PROGRAM (3)
	OUTPUT (6)
	RESULT :
	EX.NO:12B LINKED FILE ALLOCATION AIM:
	ALGORITHM: (13)
	PROGRAM: (5)
	OUTPUT: (8)
	RESULT: (11)
	EX.NO:12C INDEXED FILE ALLOCATION AIM:
	ALGORITHM: (14)
	PROGRAM (4)
	OUTPUT: (9)
	RESULT : (1)
	VIVA QUESTIONS: (5)
	ASSIGNMENT: (1)
	EX.NO: 13 MULTI-LEVEL QUEUE SCHEDULING AIM:
	DESCRIPTION: (10)
	PROGRAM: (6)
	OUTPUT (7)
	VIVA QUESTIONS (6)
	ASSIGNMENT: (2)
	EX.NO: 14 DISK SCHEDULING ALGORITHMS AIM:
	DESCRIPTION
	PROGRAM (5)
	OUTPUT (8)
	SCAN DISK SCHEDULING ALGORITHM
	OUTPUT (9)
	C-SCAN DISK SCHEDULING ALGORITHM
	OUTPUT (10)
	RESULT: (12)
	VIVA QUESTIONS: (6)
	ASSIGNMENT: (3)
	EX.NO.15 DINING-PHILOSOPHERS PROBLEM. AIM:
	DESCRIPTION (1)
	PROGRAM (6)
	OUTPUT (11)
	RESULT: (13)
	VIVA QUESTIONS: (7)
	ASSIGNMENT: (4)

